\(\int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx\) [671]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 32, antiderivative size = 116 \[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=-\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {4 a \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}} \] Output:

-2*(a+b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^( 
1/2))/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+4*a*((a+b*cos(d*x+c))/(a+b))^(1/2)* 
InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2)*(b/(a+b))^(1/2))/d/(a+b*cos(d*x+c))^ 
(1/2)
 

Mathematica [A] (verified)

Time = 0.37 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.72 \[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=-\frac {2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \left ((a+b) E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )-2 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )\right )}{d \sqrt {a+b \cos (c+d x)}} \] Input:

Integrate[(a^2 - b^2*Cos[c + d*x]^2)/(a + b*Cos[c + d*x])^(3/2),x]
 

Output:

(-2*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*((a + b)*EllipticE[(c + d*x)/2, (2* 
b)/(a + b)] - 2*a*EllipticF[(c + d*x)/2, (2*b)/(a + b)]))/(d*Sqrt[a + b*Co 
s[c + d*x]])
 

Rubi [A] (verified)

Time = 0.65 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {3042, 3495, 25, 3042, 3231, 3042, 3134, 3042, 3132, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a^2-b^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 3495

\(\displaystyle -\int -\frac {a-b \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx\)

\(\Big \downarrow \) 25

\(\displaystyle \int \frac {a-b \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a-b \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3231

\(\displaystyle 2 a \int \frac {1}{\sqrt {a+b \cos (c+d x)}}dx-\int \sqrt {a+b \cos (c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 a \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\int \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 3134

\(\displaystyle 2 a \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {\sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 a \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {\sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\)

\(\Big \downarrow \) 3132

\(\displaystyle 2 a \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {2 a \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}-\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}-\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {4 a \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}-\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\)

Input:

Int[(a^2 - b^2*Cos[c + d*x]^2)/(a + b*Cos[c + d*x])^(3/2),x]
 

Output:

(-2*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqr 
t[(a + b*Cos[c + d*x])/(a + b)]) + (4*a*Sqrt[(a + b*Cos[c + d*x])/(a + b)] 
*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + b*Cos[c + d*x]])
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3231
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)]], x_Symbol] :> Simp[(b*c - a*d)/b   Int[1/Sqrt[a + b*Sin[e + f*x 
]], x], x] + Simp[d/b   Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b 
, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 3495
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*sin[(e_.) + 
 (f_.)*(x_)]^2), x_Symbol] :> Simp[C/b^2   Int[(a + b*Sin[e + f*x])^(m + 1) 
*Simp[-a + b*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && 
 EqQ[A*b^2 + a^2*C, 0]
 
Maple [A] (verified)

Time = 5.88 (sec) , antiderivative size = 218, normalized size of antiderivative = 1.88

method result size
default \(-\frac {2 \sqrt {\left (2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \left (2 a \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )-a \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )+b \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )\right )}{\sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a +b}\, d}\) \(218\)
parts \(-\frac {2 a^{2} \left (2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, a -\sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, b \right )}{\left (a -b \right ) \left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a +b}\, d}+\frac {4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a^{2} b -4 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{3}+4 a \,b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )+4 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{3}-4 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{2} b -2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a \,b^{2}+2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) b^{3}}{\left (a -b \right ) \left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a +b}\, d}\) \(747\)
risch \(\text {Expression too large to display}\) \(1066\)

Input:

int((a^2-b^2*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-2*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d* 
x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*(2*a*Ellipt 
icF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-a*EllipticE(cos(1/2*d*x+1/2*c), 
(-2*b/(a-b))^(1/2))+b*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2)))/(- 
2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2 
*c)/(-2*b*sin(1/2*d*x+1/2*c)^2+a+b)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 355, normalized size of antiderivative = 3.06 \[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=-\frac {2 \, {\left (5 i \, \sqrt {\frac {1}{2}} a \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) - 5 i \, \sqrt {\frac {1}{2}} a \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) + 3 i \, \sqrt {\frac {1}{2}} b^{\frac {3}{2}} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) - 3 i \, \sqrt {\frac {1}{2}} b^{\frac {3}{2}} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right )\right )}}{3 \, b d} \] Input:

integrate((a^2-b^2*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="fric 
as")
 

Output:

-2/3*(5*I*sqrt(1/2)*a*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, 
 -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 
 2*a)/b) - 5*I*sqrt(1/2)*a*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^2) 
/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + 
 c) + 2*a)/b) + 3*I*sqrt(1/2)*b^(3/2)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)/ 
b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/ 
b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + 
c) + 2*a)/b)) - 3*I*sqrt(1/2)*b^(3/2)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)/ 
b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/ 
b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + 
c) + 2*a)/b)))/(b*d)
 

Sympy [F]

\[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {a - b \cos {\left (c + d x \right )}}{\sqrt {a + b \cos {\left (c + d x \right )}}}\, dx \] Input:

integrate((a**2-b**2*cos(d*x+c)**2)/(a+b*cos(d*x+c))**(3/2),x)
 

Output:

Integral((a - b*cos(c + d*x))/sqrt(a + b*cos(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { -\frac {b^{2} \cos \left (d x + c\right )^{2} - a^{2}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((a^2-b^2*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="maxi 
ma")
 

Output:

-integrate((b^2*cos(d*x + c)^2 - a^2)/(b*cos(d*x + c) + a)^(3/2), x)
 

Giac [F]

\[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { -\frac {b^{2} \cos \left (d x + c\right )^{2} - a^{2}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((a^2-b^2*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="giac 
")
 

Output:

integrate(-(b^2*cos(d*x + c)^2 - a^2)/(b*cos(d*x + c) + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {a^2-b^2\,{\cos \left (c+d\,x\right )}^2}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \] Input:

int((a^2 - b^2*cos(c + d*x)^2)/(a + b*cos(c + d*x))^(3/2),x)
 

Output:

int((a^2 - b^2*cos(c + d*x)^2)/(a + b*cos(c + d*x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}}{\cos \left (d x +c \right ) b +a}d x \right ) a -\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \cos \left (d x +c \right )}{\cos \left (d x +c \right ) b +a}d x \right ) b \] Input:

int((a^2-b^2*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(3/2),x)
 

Output:

int(sqrt(cos(c + d*x)*b + a)/(cos(c + d*x)*b + a),x)*a - int((sqrt(cos(c + 
 d*x)*b + a)*cos(c + d*x))/(cos(c + d*x)*b + a),x)*b