\(\int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{7/2}} \, dx\) [673]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 32, antiderivative size = 243 \[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{7/2}} \, dx=\frac {2 \left (5 a^2+3 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{3 \left (a^2-b^2\right )^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {4 a \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{3 \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}-\frac {4 a b \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}-\frac {2 b \left (5 a^2+3 b^2\right ) \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}} \] Output:

2/3*(5*a^2+3*b^2)*(a+b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1 
/2)*(b/(a+b))^(1/2))/(a^2-b^2)^2/d/((a+b*cos(d*x+c))/(a+b))^(1/2)-4/3*a*(( 
a+b*cos(d*x+c))/(a+b))^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2)*(b/(a+b 
))^(1/2))/(a^2-b^2)/d/(a+b*cos(d*x+c))^(1/2)-4/3*a*b*sin(d*x+c)/(a^2-b^2)/ 
d/(a+b*cos(d*x+c))^(3/2)-2/3*b*(5*a^2+3*b^2)*sin(d*x+c)/(a^2-b^2)^2/d/(a+b 
*cos(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 1.27 (sec) , antiderivative size = 158, normalized size of antiderivative = 0.65 \[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{7/2}} \, dx=\frac {2 \left (\frac {\left (\frac {a+b \cos (c+d x)}{a+b}\right )^{3/2} \left (\left (5 a^2+3 b^2\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )+2 a (-a+b) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )\right )}{(a-b)^2}-\frac {b \left (a \left (7 a^2+b^2\right )+b \left (5 a^2+3 b^2\right ) \cos (c+d x)\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2}\right )}{3 d (a+b \cos (c+d x))^{3/2}} \] Input:

Integrate[(a^2 - b^2*Cos[c + d*x]^2)/(a + b*Cos[c + d*x])^(7/2),x]
 

Output:

(2*((((a + b*Cos[c + d*x])/(a + b))^(3/2)*((5*a^2 + 3*b^2)*EllipticE[(c + 
d*x)/2, (2*b)/(a + b)] + 2*a*(-a + b)*EllipticF[(c + d*x)/2, (2*b)/(a + b) 
]))/(a - b)^2 - (b*(a*(7*a^2 + b^2) + b*(5*a^2 + 3*b^2)*Cos[c + d*x])*Sin[ 
c + d*x])/(a^2 - b^2)^2))/(3*d*(a + b*Cos[c + d*x])^(3/2))
 

Rubi [A] (verified)

Time = 1.31 (sec) , antiderivative size = 253, normalized size of antiderivative = 1.04, number of steps used = 18, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.562, Rules used = {3042, 3495, 25, 3042, 3233, 27, 3042, 3233, 27, 3042, 3231, 3042, 3134, 3042, 3132, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{7/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a^2-b^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{7/2}}dx\)

\(\Big \downarrow \) 3495

\(\displaystyle -\int -\frac {a-b \cos (c+d x)}{(a+b \cos (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 25

\(\displaystyle \int \frac {a-b \cos (c+d x)}{(a+b \cos (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a-b \sin \left (c+d x+\frac {\pi }{2}\right )}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 3233

\(\displaystyle -\frac {2 \int -\frac {3 \left (a^2+b^2\right )-2 a b \cos (c+d x)}{2 (a+b \cos (c+d x))^{3/2}}dx}{3 \left (a^2-b^2\right )}-\frac {4 a b \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {3 \left (a^2+b^2\right )-2 a b \cos (c+d x)}{(a+b \cos (c+d x))^{3/2}}dx}{3 \left (a^2-b^2\right )}-\frac {4 a b \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {3 \left (a^2+b^2\right )-2 a b \sin \left (c+d x+\frac {\pi }{2}\right )}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{3 \left (a^2-b^2\right )}-\frac {4 a b \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3233

\(\displaystyle \frac {-\frac {2 \int -\frac {a \left (3 a^2+5 b^2\right )+b \left (5 a^2+3 b^2\right ) \cos (c+d x)}{2 \sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}-\frac {2 b \left (5 a^2+3 b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {4 a b \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {a \left (3 a^2+5 b^2\right )+b \left (5 a^2+3 b^2\right ) \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}-\frac {2 b \left (5 a^2+3 b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {4 a b \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {a \left (3 a^2+5 b^2\right )+b \left (5 a^2+3 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {2 b \left (5 a^2+3 b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {4 a b \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3231

\(\displaystyle \frac {\frac {\left (5 a^2+3 b^2\right ) \int \sqrt {a+b \cos (c+d x)}dx-2 a \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}-\frac {2 b \left (5 a^2+3 b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {4 a b \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (5 a^2+3 b^2\right ) \int \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx-2 a \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {2 b \left (5 a^2+3 b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {4 a b \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {\frac {\frac {\left (5 a^2+3 b^2\right ) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-2 a \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {2 b \left (5 a^2+3 b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {4 a b \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\left (5 a^2+3 b^2\right ) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-2 a \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {2 b \left (5 a^2+3 b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {4 a b \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {\frac {\frac {2 \left (5 a^2+3 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-2 a \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {2 b \left (5 a^2+3 b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {4 a b \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {\frac {\frac {2 \left (5 a^2+3 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 a \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}}{a^2-b^2}-\frac {2 b \left (5 a^2+3 b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {4 a b \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {2 \left (5 a^2+3 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 a \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}}{a^2-b^2}-\frac {2 b \left (5 a^2+3 b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {4 a b \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {\frac {\frac {2 \left (5 a^2+3 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {4 a \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{a^2-b^2}-\frac {2 b \left (5 a^2+3 b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {4 a b \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

Input:

Int[(a^2 - b^2*Cos[c + d*x]^2)/(a + b*Cos[c + d*x])^(7/2),x]
 

Output:

(-4*a*b*Sin[c + d*x])/(3*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^(3/2)) + (((2* 
(5*a^2 + 3*b^2)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + 
 b)])/(d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) - (4*a*(a^2 - b^2)*Sqrt[(a + 
b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a 
+ b*Cos[c + d*x]]))/(a^2 - b^2) - (2*b*(5*a^2 + 3*b^2)*Sin[c + d*x])/((a^2 
 - b^2)*d*Sqrt[a + b*Cos[c + d*x]]))/(3*(a^2 - b^2))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3231
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)]], x_Symbol] :> Simp[(b*c - a*d)/b   Int[1/Sqrt[a + b*Sin[e + f*x 
]], x], x] + Simp[d/b   Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b 
, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 3233
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(-(b*c - a*d))*Cos[e + f*x]*((a + b*Sin[e + 
 f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(a^2 - b^2)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[(a*c - b*d)*(m + 1) - (b*c - a*d)*( 
m + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c 
- a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]
 

rule 3495
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*sin[(e_.) + 
 (f_.)*(x_)]^2), x_Symbol] :> Simp[C/b^2   Int[(a + b*Sin[e + f*x])^(m + 1) 
*Simp[-a + b*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && 
 EqQ[A*b^2 + a^2*C, 0]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(791\) vs. \(2(232)=464\).

Time = 14.16 (sec) , antiderivative size = 792, normalized size of antiderivative = 3.26

method result size
default \(\text {Expression too large to display}\) \(792\)
parts \(\text {Expression too large to display}\) \(1920\)

Input:

int((a^2-b^2*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(7/2),x,method=_RETURNVERBOSE)
 

Output:

-(-(-2*b*cos(1/2*d*x+1/2*c)^2-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-4*b*sin(1 
/2*d*x+1/2*c)^2/(a-b)/(a+b)*cos(1/2*d*x+1/2*c)/(-(-2*b*cos(1/2*d*x+1/2*c)^ 
2-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)-2/(a+b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(( 
2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b 
)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1 
/2))+2/(a+b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/ 
(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)* 
(EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-EllipticE(cos(1/2*d*x+1/ 
2*c),(-2*b/(a-b))^(1/2)))+4*a*(1/6/b/(a-b)/(a+b)*cos(1/2*d*x+1/2*c)*(-2*b* 
sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c) 
^2+1/2/b*(a-b))^2+8/3*b*sin(1/2*d*x+1/2*c)^2/(a-b)^2/(a+b)^2*cos(1/2*d*x+1 
/2*c)*a/(-(-2*b*cos(1/2*d*x+1/2*c)^2-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)+(3*a 
-b)/(3*a^3+3*a^2*b-3*a*b^2-3*b^3)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1 
/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2 
*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-4/3* 
a/(a-b)/(a+b)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a- 
b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/ 
2)*(EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-EllipticE(cos(1/2*d*x 
+1/2*c),(-2*b/(a-b))^(1/2)))))/sin(1/2*d*x+1/2*c)/(-2*b*sin(1/2*d*x+1/2*c) 
^2+a+b)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 729, normalized size of antiderivative = 3.00 \[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{7/2}} \, dx =\text {Too large to display} \] Input:

integrate((a^2-b^2*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(7/2),x, algorithm="fric 
as")
 

Output:

-2/9*(sqrt(1/2)*(-I*a^5 + 9*I*a^3*b^2 + (-I*a^3*b^2 + 9*I*a*b^4)*cos(d*x + 
 c)^2 + 2*(-I*a^4*b + 9*I*a^2*b^3)*cos(d*x + c))*sqrt(b)*weierstrassPInver 
se(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x 
+ c) + 3*I*b*sin(d*x + c) + 2*a)/b) + sqrt(1/2)*(I*a^5 - 9*I*a^3*b^2 + (I* 
a^3*b^2 - 9*I*a*b^4)*cos(d*x + c)^2 + 2*(I*a^4*b - 9*I*a^2*b^3)*cos(d*x + 
c))*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9* 
a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) + 2*a)/b) + 3*sqrt( 
1/2)*(-5*I*a^4*b - 3*I*a^2*b^3 + (-5*I*a^2*b^3 - 3*I*b^5)*cos(d*x + c)^2 + 
 2*(-5*I*a^3*b^2 - 3*I*a*b^4)*cos(d*x + c))*sqrt(b)*weierstrassZeta(4/3*(4 
*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4 
*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3* 
I*b*sin(d*x + c) + 2*a)/b)) + 3*sqrt(1/2)*(5*I*a^4*b + 3*I*a^2*b^3 + (5*I* 
a^2*b^3 + 3*I*b^5)*cos(d*x + c)^2 + 2*(5*I*a^3*b^2 + 3*I*a*b^4)*cos(d*x + 
c))*sqrt(b)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^ 
2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^ 
2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) + 2*a)/b)) + 3*(7*a^3*b 
^2 + a*b^4 + (5*a^2*b^3 + 3*b^5)*cos(d*x + c))*sqrt(b*cos(d*x + c) + a)*si 
n(d*x + c))/((a^4*b^3 - 2*a^2*b^5 + b^7)*d*cos(d*x + c)^2 + 2*(a^5*b^2 - 2 
*a^3*b^4 + a*b^6)*d*cos(d*x + c) + (a^6*b - 2*a^4*b^3 + a^2*b^5)*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{7/2}} \, dx=\text {Timed out} \] Input:

integrate((a**2-b**2*cos(d*x+c)**2)/(a+b*cos(d*x+c))**(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{7/2}} \, dx=\int { -\frac {b^{2} \cos \left (d x + c\right )^{2} - a^{2}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {7}{2}}} \,d x } \] Input:

integrate((a^2-b^2*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(7/2),x, algorithm="maxi 
ma")
 

Output:

-integrate((b^2*cos(d*x + c)^2 - a^2)/(b*cos(d*x + c) + a)^(7/2), x)
 

Giac [F]

\[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{7/2}} \, dx=\int { -\frac {b^{2} \cos \left (d x + c\right )^{2} - a^{2}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {7}{2}}} \,d x } \] Input:

integrate((a^2-b^2*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(7/2),x, algorithm="giac 
")
 

Output:

integrate(-(b^2*cos(d*x + c)^2 - a^2)/(b*cos(d*x + c) + a)^(7/2), x)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{7/2}} \, dx=\int \frac {a^2-b^2\,{\cos \left (c+d\,x\right )}^2}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{7/2}} \,d x \] Input:

int((a^2 - b^2*cos(c + d*x)^2)/(a + b*cos(c + d*x))^(7/2),x)
 

Output:

int((a^2 - b^2*cos(c + d*x)^2)/(a + b*cos(c + d*x))^(7/2), x)
 

Reduce [F]

\[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{7/2}} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}}{\cos \left (d x +c \right )^{3} b^{3}+3 \cos \left (d x +c \right )^{2} a \,b^{2}+3 \cos \left (d x +c \right ) a^{2} b +a^{3}}d x \right ) a -\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \cos \left (d x +c \right )}{\cos \left (d x +c \right )^{3} b^{3}+3 \cos \left (d x +c \right )^{2} a \,b^{2}+3 \cos \left (d x +c \right ) a^{2} b +a^{3}}d x \right ) b \] Input:

int((a^2-b^2*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(7/2),x)
 

Output:

int(sqrt(cos(c + d*x)*b + a)/(cos(c + d*x)**3*b**3 + 3*cos(c + d*x)**2*a*b 
**2 + 3*cos(c + d*x)*a**2*b + a**3),x)*a - int((sqrt(cos(c + d*x)*b + a)*c 
os(c + d*x))/(cos(c + d*x)**3*b**3 + 3*cos(c + d*x)**2*a*b**2 + 3*cos(c + 
d*x)*a**2*b + a**3),x)*b