\(\int \frac {(a+b \cos (c+d x)) (A+C \cos ^2(c+d x))}{\sqrt {\cos (c+d x)}} \, dx\) [677]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 101 \[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\frac {2 b (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a (3 A+C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a C \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 b C \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d} \] Output:

2/5*b*(5*A+3*C)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*a*(3*A+C)*Inve 
rseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/d+2/3*a*C*cos(d*x+c)^(1/2)*sin(d*x+c)/d 
+2/5*b*C*cos(d*x+c)^(3/2)*sin(d*x+c)/d
 

Mathematica [A] (verified)

Time = 1.21 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.78 \[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\frac {2 \left (3 b (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+5 a (3 A+C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+C \sqrt {\cos (c+d x)} (5 a+3 b \cos (c+d x)) \sin (c+d x)\right )}{15 d} \] Input:

Integrate[((a + b*Cos[c + d*x])*(A + C*Cos[c + d*x]^2))/Sqrt[Cos[c + d*x]] 
,x]
 

Output:

(2*(3*b*(5*A + 3*C)*EllipticE[(c + d*x)/2, 2] + 5*a*(3*A + C)*EllipticF[(c 
 + d*x)/2, 2] + C*Sqrt[Cos[c + d*x]]*(5*a + 3*b*Cos[c + d*x])*Sin[c + d*x] 
))/(15*d)
 

Rubi [A] (verified)

Time = 0.61 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.06, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 3513, 27, 3042, 3502, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right ) \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3513

\(\displaystyle \frac {2}{5} \int \frac {5 a C \cos ^2(c+d x)+b (5 A+3 C) \cos (c+d x)+5 a A}{2 \sqrt {\cos (c+d x)}}dx+\frac {2 b C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \int \frac {5 a C \cos ^2(c+d x)+b (5 A+3 C) \cos (c+d x)+5 a A}{\sqrt {\cos (c+d x)}}dx+\frac {2 b C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \int \frac {5 a C \sin \left (c+d x+\frac {\pi }{2}\right )^2+b (5 A+3 C) \sin \left (c+d x+\frac {\pi }{2}\right )+5 a A}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 b C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {1}{5} \left (\frac {2}{3} \int \frac {5 a (3 A+C)+3 b (5 A+3 C) \cos (c+d x)}{2 \sqrt {\cos (c+d x)}}dx+\frac {10 a C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 b C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \int \frac {5 a (3 A+C)+3 b (5 A+3 C) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx+\frac {10 a C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 b C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \int \frac {5 a (3 A+C)+3 b (5 A+3 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {10 a C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 b C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (5 a (3 A+C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx+3 b (5 A+3 C) \int \sqrt {\cos (c+d x)}dx\right )+\frac {10 a C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 b C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (5 a (3 A+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 b (5 A+3 C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {10 a C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 b C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (5 a (3 A+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {6 b (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {10 a C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 b C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\frac {10 a (3 A+C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 b (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {10 a C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 b C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

Input:

Int[((a + b*Cos[c + d*x])*(A + C*Cos[c + d*x]^2))/Sqrt[Cos[c + d*x]],x]
 

Output:

(2*b*C*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d) + (((6*b*(5*A + 3*C)*Ellipti 
cE[(c + d*x)/2, 2])/d + (10*a*(3*A + C)*EllipticF[(c + d*x)/2, 2])/d)/3 + 
(10*a*C*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d))/5
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 

rule 3513
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[ 
(-C)*d*Cos[e + f*x]*Sin[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 3) 
)), x] + Simp[1/(b*(m + 3))   Int[(a + b*Sin[e + f*x])^m*Simp[a*C*d + A*b*c 
*(m + 3) + b*d*(C*(m + 2) + A*(m + 3))*Sin[e + f*x] - (2*a*C*d - b*c*C*(m + 
 3))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && 
 NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(398\) vs. \(2(92)=184\).

Time = 15.44 (sec) , antiderivative size = 399, normalized size of antiderivative = 3.95

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-24 C b \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+20 C \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a +24 C \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) b +15 a A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-15 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b -10 C \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a -6 C \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) b +5 C a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-9 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b \right )}{15 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(399\)
parts \(\frac {2 A b \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {1-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 C a \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 C b \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}+\frac {2 a A \,\operatorname {InverseJacobiAM}\left (\frac {d x}{2}+\frac {c}{2}, \sqrt {2}\right )}{d}\) \(538\)

Input:

int((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2),x,method=_RETURNV 
ERBOSE)
 

Output:

-2/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-24*C*b*cos 
(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+20*C*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x 
+1/2*c)*a+24*C*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)*b+15*a*A*(sin(1/2*d 
*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+ 
1/2*c),2^(1/2))-15*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2- 
1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b-10*C*sin(1/2*d*x+1/2*c)^2 
*cos(1/2*d*x+1/2*c)*a-6*C*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)*b+5*C*a* 
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(co 
s(1/2*d*x+1/2*c),2^(1/2))-9*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+ 
1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b)/(-2*sin(1/2*d*x 
+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/ 
2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.61 \[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\frac {-5 i \, \sqrt {2} {\left (3 \, A + C\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} {\left (3 \, A + C\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} {\left (5 \, A + 3 \, C\right )} b {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} {\left (5 \, A + 3 \, C\right )} b {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (3 \, C b \cos \left (d x + c\right ) + 5 \, C a\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{15 \, d} \] Input:

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2),x, algorith 
m="fricas")
 

Output:

1/15*(-5*I*sqrt(2)*(3*A + C)*a*weierstrassPInverse(-4, 0, cos(d*x + c) + I 
*sin(d*x + c)) + 5*I*sqrt(2)*(3*A + C)*a*weierstrassPInverse(-4, 0, cos(d* 
x + c) - I*sin(d*x + c)) + 3*I*sqrt(2)*(5*A + 3*C)*b*weierstrassZeta(-4, 0 
, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*I*sqrt(2) 
*(5*A + 3*C)*b*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + 
 c) - I*sin(d*x + c))) + 2*(3*C*b*cos(d*x + c) + 5*C*a)*sqrt(cos(d*x + c)) 
*sin(d*x + c))/d
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)**2)/cos(d*x+c)**(1/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2),x, algorith 
m="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c) + a)/sqrt(cos(d*x + c)), 
x)
 

Giac [F]

\[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2),x, algorith 
m="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c) + a)/sqrt(cos(d*x + c)), 
x)
 

Mupad [B] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.11 \[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\frac {2\,C\,a\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,A\,a\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,A\,b\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}-\frac {2\,C\,b\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(((A + C*cos(c + d*x)^2)*(a + b*cos(c + d*x)))/cos(c + d*x)^(1/2),x)
 

Output:

(2*C*a*(cos(c + d*x)^(1/2)*sin(c + d*x) + ellipticF(c/2 + (d*x)/2, 2)))/(3 
*d) + (2*A*a*ellipticF(c/2 + (d*x)/2, 2))/d + (2*A*b*ellipticE(c/2 + (d*x) 
/2, 2))/d - (2*C*b*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 1 
1/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) a^{2}+\left (\int \sqrt {\cos \left (d x +c \right )}d x \right ) a b +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) a c +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) b c \] Input:

int((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2),x)
 

Output:

int(sqrt(cos(c + d*x))/cos(c + d*x),x)*a**2 + int(sqrt(cos(c + d*x)),x)*a* 
b + int(sqrt(cos(c + d*x))*cos(c + d*x),x)*a*c + int(sqrt(cos(c + d*x))*co 
s(c + d*x)**2,x)*b*c