\(\int \frac {(a+b \cos (c+d x)) (A+C \cos ^2(c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\) [681]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 165 \[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=-\frac {2 b (3 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a (5 A+7 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 A b \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a (5 A+7 C) \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 b (3 A+5 C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \] Output:

-2/5*b*(3*A+5*C)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/21*a*(5*A+7*C)* 
InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/d+2/7*a*A*sin(d*x+c)/d/cos(d*x+c)^( 
7/2)+2/5*A*b*sin(d*x+c)/d/cos(d*x+c)^(5/2)+2/21*a*(5*A+7*C)*sin(d*x+c)/d/c 
os(d*x+c)^(3/2)+2/5*b*(3*A+5*C)*sin(d*x+c)/d/cos(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 1.77 (sec) , antiderivative size = 160, normalized size of antiderivative = 0.97 \[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {-42 b (3 A+5 C) \cos ^{\frac {5}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+10 a (5 A+7 C) \cos ^{\frac {5}{2}}(c+d x) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+42 A b \sin (c+d x)+126 A b \cos ^2(c+d x) \sin (c+d x)+210 b C \cos ^2(c+d x) \sin (c+d x)+25 a A \sin (2 (c+d x))+35 a C \sin (2 (c+d x))+30 a A \tan (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x)} \] Input:

Integrate[((a + b*Cos[c + d*x])*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(9/2) 
,x]
 

Output:

(-42*b*(3*A + 5*C)*Cos[c + d*x]^(5/2)*EllipticE[(c + d*x)/2, 2] + 10*a*(5* 
A + 7*C)*Cos[c + d*x]^(5/2)*EllipticF[(c + d*x)/2, 2] + 42*A*b*Sin[c + d*x 
] + 126*A*b*Cos[c + d*x]^2*Sin[c + d*x] + 210*b*C*Cos[c + d*x]^2*Sin[c + d 
*x] + 25*a*A*Sin[2*(c + d*x)] + 35*a*C*Sin[2*(c + d*x)] + 30*a*A*Tan[c + d 
*x])/(105*d*Cos[c + d*x]^(5/2))
 

Rubi [A] (verified)

Time = 0.77 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.98, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.394, Rules used = {3042, 3511, 27, 3042, 3500, 27, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right ) \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx\)

\(\Big \downarrow \) 3511

\(\displaystyle \frac {2}{7} \int \frac {7 b C \cos ^2(c+d x)+a (5 A+7 C) \cos (c+d x)+7 A b}{2 \cos ^{\frac {7}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \int \frac {7 b C \cos ^2(c+d x)+a (5 A+7 C) \cos (c+d x)+7 A b}{\cos ^{\frac {7}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \int \frac {7 b C \sin \left (c+d x+\frac {\pi }{2}\right )^2+a (5 A+7 C) \sin \left (c+d x+\frac {\pi }{2}\right )+7 A b}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {1}{7} \left (\frac {2}{5} \int \frac {5 a (5 A+7 C)+7 b (3 A+5 C) \cos (c+d x)}{2 \cos ^{\frac {5}{2}}(c+d x)}dx+\frac {14 A b \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \int \frac {5 a (5 A+7 C)+7 b (3 A+5 C) \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)}dx+\frac {14 A b \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \int \frac {5 a (5 A+7 C)+7 b (3 A+5 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {14 A b \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 a (5 A+7 C) \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)}dx+7 b (3 A+5 C) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx\right )+\frac {14 A b \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 a (5 A+7 C) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+7 b (3 A+5 C) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\right )+\frac {14 A b \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 a (5 A+7 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+7 b (3 A+5 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )\right )+\frac {14 A b \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 a (5 A+7 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+7 b (3 A+5 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )\right )+\frac {14 A b \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 a (5 A+7 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+7 b (3 A+5 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {14 A b \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 a (5 A+7 C) \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+7 b (3 A+5 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {14 A b \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

Input:

Int[((a + b*Cos[c + d*x])*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(9/2),x]
 

Output:

(2*a*A*Sin[c + d*x])/(7*d*Cos[c + d*x]^(7/2)) + ((14*A*b*Sin[c + d*x])/(5* 
d*Cos[c + d*x]^(5/2)) + (5*a*(5*A + 7*C)*((2*EllipticF[(c + d*x)/2, 2])/(3 
*d) + (2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2))) + 7*b*(3*A + 5*C)*((-2*El 
lipticE[(c + d*x)/2, 2])/d + (2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])))/5)/ 
7
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 

rule 3511
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[ 
(-(b*c - a*d))*(A*b^2 + a^2*C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/( 
b^2*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(b^2*(m + 1)*(a^2 - b^2))   Int[(a 
 + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*(a*C*(b*c - a*d) + A*b*(a*c - b*d 
)) - ((b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] + b 
*C*d*(m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e 
, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(813\) vs. \(2(148)=296\).

Time = 14.33 (sec) , antiderivative size = 814, normalized size of antiderivative = 4.93

method result size
default \(\text {Expression too large to display}\) \(814\)
parts \(\text {Expression too large to display}\) \(1002\)

Input:

int((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x,method=_RETURNV 
ERBOSE)
 

Output:

-(-(1-2*cos(1/2*d*x+1/2*c)^2)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/5*A*b/sin(1/2 
*d*x+1/2*c)^2/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d* 
x+1/2*c)^2-1)*(24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-12*(2*sin(1/2*d* 
x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2 
*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2* 
c)+12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2 
))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2*c)^ 
2*cos(1/2*d*x+1/2*c)-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^ 
2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^4 
+sin(1/2*d*x+1/2*c)^2)^(1/2)+2*C*a*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d* 
x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(s 
in(1/2*d*x+1/2*c)^2)^(1/2)*(1-2*cos(1/2*d*x+1/2*c)^2)^(1/2)/(-2*sin(1/2*d* 
x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2 
)))+2*C*b/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+ 
1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1 
/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellipt 
icE(cos(1/2*d*x+1/2*c),2^(1/2)))+2*a*A*(-1/56*cos(1/2*d*x+1/2*c)*(-2*sin(1 
/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^4-5 
/42*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2 
)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+5/21*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(1-2*c...
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.47 \[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {-5 i \, \sqrt {2} {\left (5 \, A + 7 \, C\right )} a \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} {\left (5 \, A + 7 \, C\right )} a \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 21 i \, \sqrt {2} {\left (3 \, A + 5 \, C\right )} b \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 i \, \sqrt {2} {\left (3 \, A + 5 \, C\right )} b \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (21 \, {\left (3 \, A + 5 \, C\right )} b \cos \left (d x + c\right )^{3} + 5 \, {\left (5 \, A + 7 \, C\right )} a \cos \left (d x + c\right )^{2} + 21 \, A b \cos \left (d x + c\right ) + 15 \, A a\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{105 \, d \cos \left (d x + c\right )^{4}} \] Input:

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x, algorith 
m="fricas")
 

Output:

1/105*(-5*I*sqrt(2)*(5*A + 7*C)*a*cos(d*x + c)^4*weierstrassPInverse(-4, 0 
, cos(d*x + c) + I*sin(d*x + c)) + 5*I*sqrt(2)*(5*A + 7*C)*a*cos(d*x + c)^ 
4*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 21*I*sqrt(2) 
*(3*A + 5*C)*b*cos(d*x + c)^4*weierstrassZeta(-4, 0, weierstrassPInverse(- 
4, 0, cos(d*x + c) + I*sin(d*x + c))) + 21*I*sqrt(2)*(3*A + 5*C)*b*cos(d*x 
 + c)^4*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I 
*sin(d*x + c))) + 2*(21*(3*A + 5*C)*b*cos(d*x + c)^3 + 5*(5*A + 7*C)*a*cos 
(d*x + c)^2 + 21*A*b*cos(d*x + c) + 15*A*a)*sqrt(cos(d*x + c))*sin(d*x + c 
))/(d*cos(d*x + c)^4)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)**2)/cos(d*x+c)**(9/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac {9}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x, algorith 
m="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c) + a)/cos(d*x + c)^(9/2), 
x)
 

Giac [F]

\[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac {9}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x, algorith 
m="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c) + a)/cos(d*x + c)^(9/2), 
x)
 

Mupad [B] (verification not implemented)

Time = 1.78 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.07 \[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2\,A\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {7}{4},\frac {1}{2};\ -\frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,{\cos \left (c+d\,x\right )}^{7/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,A\,b\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{5\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,C\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,C\,b\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(((A + C*cos(c + d*x)^2)*(a + b*cos(c + d*x)))/cos(c + d*x)^(9/2),x)
 

Output:

(2*A*a*sin(c + d*x)*hypergeom([-7/4, 1/2], -3/4, cos(c + d*x)^2))/(7*d*cos 
(c + d*x)^(7/2)*(sin(c + d*x)^2)^(1/2)) + (2*A*b*sin(c + d*x)*hypergeom([- 
5/4, 1/2], -1/4, cos(c + d*x)^2))/(5*d*cos(c + d*x)^(5/2)*(sin(c + d*x)^2) 
^(1/2)) + (2*C*a*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2)) 
/(3*d*cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1/2)) + (2*C*b*sin(c + d*x)*hyp 
ergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d 
*x)^2)^(1/2))
 

Reduce [F]

\[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{5}}d x \right ) a^{2}+\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4}}d x \right ) a b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}}d x \right ) a c +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) b c \] Input:

int((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x)
 

Output:

int(sqrt(cos(c + d*x))/cos(c + d*x)**5,x)*a**2 + int(sqrt(cos(c + d*x))/co 
s(c + d*x)**4,x)*a*b + int(sqrt(cos(c + d*x))/cos(c + d*x)**3,x)*a*c + int 
(sqrt(cos(c + d*x))/cos(c + d*x)**2,x)*b*c