\(\int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx\) [717]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 214 \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx=-\frac {\left (A b^2+a^2 C\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a b \left (a^2-b^2\right ) d}-\frac {\left (A b^2-a^2 C+2 b^2 C\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b^2 \left (a^2-b^2\right ) d}-\frac {\left (A b^4+a^4 C-3 a^2 b^2 (A+C)\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a (a-b) b^2 (a+b)^2 d}+\frac {\left (A b^2+a^2 C\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))} \] Output:

-(A*b^2+C*a^2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/b/(a^2-b^2)/d-(A*b^ 
2-C*a^2+2*C*b^2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/b^2/(a^2-b^2)/d-(A 
*b^4+a^4*C-3*a^2*b^2*(A+C))*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2 
))/a/(a-b)/b^2/(a+b)^2/d+(A*b^2+C*a^2)*cos(d*x+c)^(1/2)*sin(d*x+c)/a/(a^2- 
b^2)/d/(a+b*cos(d*x+c))
 

Mathematica [A] (warning: unable to verify)

Time = 3.12 (sec) , antiderivative size = 271, normalized size of antiderivative = 1.27 \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx=\frac {\frac {4 \left (A b^2+a^2 C\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac {\frac {2 \left (-3 A b^2+a^2 (4 A+C)\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}-\frac {8 a (A+C) \left ((a+b) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )\right )}{a+b}-\frac {2 \left (A b^2+a^2 C\right ) \left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (-2 a^2+b^2\right ) \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{a b^2 \sqrt {\sin ^2(c+d x)}}}{(a-b) (a+b)}}{4 a d} \] Input:

Integrate[(A + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])^ 
2),x]
 

Output:

((4*(A*b^2 + a^2*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/((a^2 - b^2)*(a + b*C 
os[c + d*x])) + ((2*(-3*A*b^2 + a^2*(4*A + C))*EllipticPi[(2*b)/(a + b), ( 
c + d*x)/2, 2])/(a + b) - (8*a*(A + C)*((a + b)*EllipticF[(c + d*x)/2, 2] 
- a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]))/(a + b) - (2*(A*b^2 + a^2* 
C)*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b)*Ellipti 
cF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (-2*a^2 + b^2)*EllipticPi[-(b/a), Arc 
Sin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*b^2*Sqrt[Sin[c + d*x]^2]))/ 
((a - b)*(a + b)))/(4*a*d)
 

Rubi [A] (verified)

Time = 1.38 (sec) , antiderivative size = 204, normalized size of antiderivative = 0.95, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.343, Rules used = {3042, 3535, 27, 3042, 3538, 25, 3042, 3119, 3481, 3042, 3120, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 3535

\(\displaystyle \frac {\int -\frac {-\left ((2 A+C) a^2\right )+2 b (A+C) \cos (c+d x) a+A b^2+\left (C a^2+A b^2\right ) \cos ^2(c+d x)}{2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{a \left (a^2-b^2\right )}+\frac {\left (a^2 C+A b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (a^2 C+A b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac {\int \frac {-\left ((2 A+C) a^2\right )+2 b (A+C) \cos (c+d x) a+A b^2+\left (C a^2+A b^2\right ) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{2 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\left (a^2 C+A b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac {\int \frac {-\left ((2 A+C) a^2\right )+2 b (A+C) \sin \left (c+d x+\frac {\pi }{2}\right ) a+A b^2+\left (C a^2+A b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3538

\(\displaystyle \frac {\left (a^2 C+A b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac {\frac {\left (a^2 C+A b^2\right ) \int \sqrt {\cos (c+d x)}dx}{b}-\frac {\int -\frac {b \left (A b^2-a^2 (2 A+C)\right )+a \left (-C a^2+A b^2+2 b^2 C\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}}{2 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\left (a^2 C+A b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac {\frac {\left (a^2 C+A b^2\right ) \int \sqrt {\cos (c+d x)}dx}{b}+\frac {\int \frac {b \left (A b^2-a^2 (2 A+C)\right )+a \left (-C a^2+A b^2+2 b^2 C\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}}{2 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\left (a^2 C+A b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac {\frac {\left (a^2 C+A b^2\right ) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b}+\frac {\int \frac {b \left (A b^2-a^2 (2 A+C)\right )+a \left (-C a^2+A b^2+2 b^2 C\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}}{2 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\left (a^2 C+A b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac {\frac {\int \frac {b \left (A b^2-a^2 (2 A+C)\right )+a \left (-C a^2+A b^2+2 b^2 C\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}+\frac {2 \left (a^2 C+A b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{2 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {\left (a^2 C+A b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac {\frac {\frac {a \left (a^2 (-C)+A b^2+2 b^2 C\right ) \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{b}+\frac {\left (a^4 C-3 a^2 b^2 (A+C)+A b^4\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}}{b}+\frac {2 \left (a^2 C+A b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{2 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\left (a^2 C+A b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac {\frac {\frac {a \left (a^2 (-C)+A b^2+2 b^2 C\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}+\frac {\left (a^4 C-3 a^2 b^2 (A+C)+A b^4\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}}{b}+\frac {2 \left (a^2 C+A b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{2 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\left (a^2 C+A b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac {\frac {\frac {\left (a^4 C-3 a^2 b^2 (A+C)+A b^4\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}+\frac {2 a \left (a^2 (-C)+A b^2+2 b^2 C\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b d}}{b}+\frac {2 \left (a^2 C+A b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{2 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {\left (a^2 C+A b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac {\frac {2 \left (a^2 C+A b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}+\frac {\frac {2 a \left (a^2 (-C)+A b^2+2 b^2 C\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b d}+\frac {2 \left (a^4 C-3 a^2 b^2 (A+C)+A b^4\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b d (a+b)}}{b}}{2 a \left (a^2-b^2\right )}\)

Input:

Int[(A + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])^2),x]
 

Output:

-1/2*((2*(A*b^2 + a^2*C)*EllipticE[(c + d*x)/2, 2])/(b*d) + ((2*a*(A*b^2 - 
 a^2*C + 2*b^2*C)*EllipticF[(c + d*x)/2, 2])/(b*d) + (2*(A*b^4 + a^4*C - 3 
*a^2*b^2*(A + C))*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(b*(a + b)*d) 
)/b)/(a*(a^2 - b^2)) + ((A*b^2 + a^2*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/( 
a*(a^2 - b^2)*d*(a + b*Cos[c + d*x]))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3535
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(A*b^2 + a^2*C))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*S 
in[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Simp[1/((m 
+ 1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin 
[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C)*(m + n 
+ 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d 
*(A*b^2 + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 
- d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) || 
 !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 
 0])))
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(803\) vs. \(2(217)=434\).

Time = 5.56 (sec) , antiderivative size = 804, normalized size of antiderivative = 3.76

method result size
default \(\text {Expression too large to display}\) \(804\)

Input:

int((A+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x,method=_RETUR 
NVERBOSE)
 

Output:

-(-(1-2*cos(1/2*d*x+1/2*c)^2)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*C/b^2*(sin(1/ 
2*d*x+1/2*c)^2)^(1/2)*(1-2*cos(1/2*d*x+1/2*c)^2)^(1/2)/(-2*sin(1/2*d*x+1/2 
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+2/ 
b^2*(A*b^2+C*a^2)*(-b^2/a/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2 
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c)^2+a-b)-1/2/(a+b) 
/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(1-2*cos(1/2*d*x+1/2*c)^2)^(1/2)/(-2*sin(1 
/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2 
^(1/2))-1/2*b/a/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(1-2*cos(1/2*d*x+1/ 
2*c)^2)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellipti 
cF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2*b/a/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1 
/2)*(1-2*cos(1/2*d*x+1/2*c)^2)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+ 
1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3*a/(a^2-b^2)/(-2*a* 
b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(1-2*cos(1/2*d*x+1/2*c)^2)^(1/2)/( 
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x 
+1/2*c),-2*b/(a-b),2^(1/2))+1/a/(a^2-b^2)/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+ 
1/2*c)^2)^(1/2)*(1-2*cos(1/2*d*x+1/2*c)^2)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+ 
sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/ 
2)))+8/b*a*C/(-2*a*b+2*b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(1-2*cos(1/2*d*x+ 
1/2*c)^2)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellip 
ticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos...
 

Fricas [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x, algori 
thm="fricas")
 

Output:

Timed out
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate((A+C*cos(d*x+c)**2)/cos(d*x+c)**(1/2)/(a+b*cos(d*x+c))**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x, algori 
thm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + A)/((b*cos(d*x + c) + a)^2*sqrt(cos(d*x + c) 
)), x)
 

Giac [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x, algori 
thm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + A)/((b*cos(d*x + c) + a)^2*sqrt(cos(d*x + c) 
)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2} \,d x \] Input:

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + b*cos(c + d*x))^2),x)
 

Output:

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + b*cos(c + d*x))^2), x)
 

Reduce [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3} b^{2}+2 \cos \left (d x +c \right )^{2} a b +\cos \left (d x +c \right ) a^{2}}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )}{\cos \left (d x +c \right )^{2} b^{2}+2 \cos \left (d x +c \right ) a b +a^{2}}d x \right ) c \] Input:

int((A+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x)
 

Output:

int(sqrt(cos(c + d*x))/(cos(c + d*x)**3*b**2 + 2*cos(c + d*x)**2*a*b + cos 
(c + d*x)*a**2),x)*a + int((sqrt(cos(c + d*x))*cos(c + d*x))/(cos(c + d*x) 
**2*b**2 + 2*cos(c + d*x)*a*b + a**2),x)*c