\(\int \frac {(a+b \cos (c+d x))^{3/2} (A+C \cos ^2(c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [735]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 509 \[ \int \frac {(a+b \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {(a-b) \sqrt {a+b} (8 A-5 C) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 d}-\frac {\sqrt {a+b} (8 a A-16 A b-5 a C-2 b C) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 d}-\frac {\sqrt {a+b} \left (8 A b^2+3 a^2 C+4 b^2 C\right ) \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b d}-\frac {a (8 A-5 C) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{4 d \sqrt {\cos (c+d x)}}-\frac {b (4 A-C) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 d}+\frac {2 A (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \] Output:

1/4*(a-b)*(a+b)^(1/2)*(8*A-5*C)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2 
)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+ 
b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/d-1/4*(a+b)^(1/2)*(8*A*a-16*A*b-5 
*C*a-2*C*b)*cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d* 
x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec( 
d*x+c))/(a-b))^(1/2)/d-1/4*(a+b)^(1/2)*(8*A*b^2+3*C*a^2+4*C*b^2)*cot(d*x+c 
)*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,( 
-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b 
))^(1/2)/b/d-1/4*a*(8*A-5*C)*(a+b*cos(d*x+c))^(1/2)*sin(d*x+c)/d/cos(d*x+c 
)^(1/2)-1/2*b*(4*A-C)*cos(d*x+c)^(1/2)*(a+b*cos(d*x+c))^(1/2)*sin(d*x+c)/d 
+2*A*(a+b*cos(d*x+c))^(3/2)*sin(d*x+c)/d/cos(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 11.64 (sec) , antiderivative size = 1209, normalized size of antiderivative = 2.38 \[ \int \frac {(a+b \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx =\text {Too large to display} \] Input:

Integrate[((a + b*Cos[c + d*x])^(3/2)*(A + C*Cos[c + d*x]^2))/Cos[c + d*x] 
^(3/2),x]
 

Output:

((4*a*(-8*a*A*b - 7*a*b*C)*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqr 
t[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x 
])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c 
 + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2 
]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) + 4*a*(8*a^2*A 
- 8*A*b^2 - 8*a^2*C - 4*b^2*C)*((Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b 
)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c 
 + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b 
*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + 
d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - (Sqrt[( 
(a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c 
+ d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + 
 d*x]*EllipticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2 
]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/(b*Sqrt[Cos[c + d*x 
]]*Sqrt[a + b*Cos[c + d*x]])) - 2*(8*a*A*b - 5*a*b*C)*((I*Cos[(c + d*x)/2] 
*Sqrt[a + b*Cos[c + d*x]]*EllipticE[I*ArcSinh[Sin[(c + d*x)/2]/Sqrt[Cos[c 
+ d*x]]], (-2*a)/(-a - b)]*Sec[c + d*x])/(b*Sqrt[Cos[(c + d*x)/2]^2*Sec[c 
+ d*x]]*Sqrt[((a + b*Cos[c + d*x])*Sec[c + d*x])/(a + b)]) + (2*a*((a*Sqrt 
[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[( 
c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Cs...
 

Rubi [A] (verified)

Time = 2.64 (sec) , antiderivative size = 514, normalized size of antiderivative = 1.01, number of steps used = 16, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.432, Rules used = {3042, 3527, 27, 3042, 3528, 27, 3042, 3540, 3042, 3532, 3042, 3288, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2} \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3527

\(\displaystyle 2 \int \frac {\sqrt {a+b \cos (c+d x)} \left (-b (4 A-C) \cos ^2(c+d x)-a (A-C) \cos (c+d x)+3 A b\right )}{2 \sqrt {\cos (c+d x)}}dx+\frac {2 A \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {\sqrt {a+b \cos (c+d x)} \left (-b (4 A-C) \cos ^2(c+d x)-a (A-C) \cos (c+d x)+3 A b\right )}{\sqrt {\cos (c+d x)}}dx+\frac {2 A \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )} \left (-b (4 A-C) \sin \left (c+d x+\frac {\pi }{2}\right )^2-a (A-C) \sin \left (c+d x+\frac {\pi }{2}\right )+3 A b\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 A \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3528

\(\displaystyle \frac {1}{2} \int \frac {-a b (8 A-5 C) \cos ^2(c+d x)-2 \left (2 a^2 (A-C)-b^2 (2 A+C)\right ) \cos (c+d x)+a b (8 A+C)}{2 \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx-\frac {b (4 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}+\frac {2 A \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{4} \int \frac {-a b (8 A-5 C) \cos ^2(c+d x)-2 \left (2 a^2 (A-C)-b^2 (2 A+C)\right ) \cos (c+d x)+a b (8 A+C)}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx-\frac {b (4 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}+\frac {2 A \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \int \frac {-a b (8 A-5 C) \sin \left (c+d x+\frac {\pi }{2}\right )^2-2 \left (2 a^2 (A-C)-b^2 (2 A+C)\right ) \sin \left (c+d x+\frac {\pi }{2}\right )+a b (8 A+C)}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {b (4 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}+\frac {2 A \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3540

\(\displaystyle \frac {1}{4} \left (\frac {\int \frac {b (8 A-5 C) a^2+2 b^2 (8 A+C) \cos (c+d x) a+b \left (3 C a^2+8 A b^2+4 b^2 C\right ) \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{2 b}-\frac {a (8 A-5 C) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )-\frac {b (4 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}+\frac {2 A \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \left (\frac {\int \frac {b (8 A-5 C) a^2+2 b^2 (8 A+C) \sin \left (c+d x+\frac {\pi }{2}\right ) a+b \left (3 C a^2+8 A b^2+4 b^2 C\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 b}-\frac {a (8 A-5 C) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )-\frac {b (4 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}+\frac {2 A \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3532

\(\displaystyle \frac {1}{4} \left (\frac {\int \frac {b (8 A-5 C) a^2+2 b^2 (8 A+C) \cos (c+d x) a}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+b \left (3 a^2 C+8 A b^2+4 b^2 C\right ) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}}dx}{2 b}-\frac {a (8 A-5 C) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )-\frac {b (4 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}+\frac {2 A \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \left (\frac {b \left (3 a^2 C+8 A b^2+4 b^2 C\right ) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\int \frac {b (8 A-5 C) a^2+2 b^2 (8 A+C) \sin \left (c+d x+\frac {\pi }{2}\right ) a}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 b}-\frac {a (8 A-5 C) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )-\frac {b (4 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}+\frac {2 A \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3288

\(\displaystyle \frac {1}{4} \left (\frac {\int \frac {b (8 A-5 C) a^2+2 b^2 (8 A+C) \sin \left (c+d x+\frac {\pi }{2}\right ) a}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} \left (3 a^2 C+8 A b^2+4 b^2 C\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{2 b}-\frac {a (8 A-5 C) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )-\frac {b (4 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}+\frac {2 A \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3477

\(\displaystyle \frac {1}{4} \left (\frac {a^2 b (8 A-5 C) \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-a b (a (8 A-5 C)-2 b (8 A+C)) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx-\frac {2 \sqrt {a+b} \left (3 a^2 C+8 A b^2+4 b^2 C\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{2 b}-\frac {a (8 A-5 C) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )-\frac {b (4 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}+\frac {2 A \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \left (\frac {a^2 b (8 A-5 C) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-a b (a (8 A-5 C)-2 b (8 A+C)) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} \left (3 a^2 C+8 A b^2+4 b^2 C\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{2 b}-\frac {a (8 A-5 C) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )-\frac {b (4 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}+\frac {2 A \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3295

\(\displaystyle \frac {1}{4} \left (\frac {a^2 b (8 A-5 C) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} \left (3 a^2 C+8 A b^2+4 b^2 C\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}-\frac {2 b \sqrt {a+b} (a (8 A-5 C)-2 b (8 A+C)) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{2 b}-\frac {a (8 A-5 C) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )-\frac {b (4 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}+\frac {2 A \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3473

\(\displaystyle \frac {1}{4} \left (\frac {-\frac {2 \sqrt {a+b} \left (3 a^2 C+8 A b^2+4 b^2 C\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}-\frac {2 b \sqrt {a+b} (a (8 A-5 C)-2 b (8 A+C)) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}+\frac {2 b (a-b) \sqrt {a+b} (8 A-5 C) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{d}}{2 b}-\frac {a (8 A-5 C) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )-\frac {b (4 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}+\frac {2 A \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{d \sqrt {\cos (c+d x)}}\)

Input:

Int[((a + b*Cos[c + d*x])^(3/2)*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(3/2) 
,x]
 

Output:

-1/2*(b*(4*A - C)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x] 
)/d + (2*A*(a + b*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]) 
 + (((2*(a - b)*b*Sqrt[a + b]*(8*A - 5*C)*Cot[c + d*x]*EllipticE[ArcSin[Sq 
rt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b 
))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - 
b)])/d - (2*b*Sqrt[a + b]*(a*(8*A - 5*C) - 2*b*(8*A + C))*Cot[c + d*x]*Ell 
ipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], 
-((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[ 
c + d*x]))/(a - b)])/d - (2*Sqrt[a + b]*(8*A*b^2 + 3*a^2*C + 4*b^2*C)*Cot[ 
c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b 
]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a 
 + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d)/(2*b) - (a*(8*A - 5*C)*Sqr 
t[a + b*Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]))/4
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3288
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[2*b*(Tan[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c 
*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*Ellipti 
cPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + 
 d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - 
 d^2, 0] && PosQ[(c + d)/b]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 3527
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + 
 f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(d*(n + 1)*(c^2 - d^ 
2))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A* 
d*(b*d*m + a*c*(n + 1)) + c*C*(b*c*m + a*d*(n + 1)) - (A*d*(a*d*(n + 2) - b 
*c*(n + 1)) - C*(b*c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] - b*( 
A*d^2*(m + n + 2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x]^2, x], x], 
x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - 
b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]
 

rule 3528
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_ 
.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x 
])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2))), x] + Simp[1/(d*(m + 
n + 2))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A* 
d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n + 2) - C*(a 
*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + 
 n + 2))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n} 
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[ 
m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))
 

rule 3532
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[C/b^2   Int[Sqrt[a + b*Sin[e + f*x]] 
/Sqrt[c + d*Sin[e + f*x]], x], x] + Simp[1/b^2   Int[(A*b^2 - a^2*C + b*(b* 
B - 2*a*C)*Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x 
]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] & 
& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3540
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(Sqrt[c + d*Sin[e + f 
*x]]/(d*f*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[1/(2*d)   Int[(1/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]))*Simp[2*a*A*d - C*(b*c - a*d) - 
 2*(a*c*C - d*(A*b + a*B))*Sin[e + f*x] + (2*b*B*d - C*(b*c + a*d))*Sin[e + 
 f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a 
*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1483\) vs. \(2(454)=908\).

Time = 33.24 (sec) , antiderivative size = 1484, normalized size of antiderivative = 2.92

method result size
default \(\text {Expression too large to display}\) \(1484\)
parts \(\text {Expression too large to display}\) \(1532\)

Input:

int((a+b*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x,method=_R 
ETURNVERBOSE)
 

Output:

1/4/d*((-16*cos(d*x+c)^2-32*cos(d*x+c)-16)*A*(cos(d*x+c)/(1+cos(d*x+c)))^( 
1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*b^2*EllipticPi(cot(d* 
x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))+(-6*cos(d*x+c)^2-12*cos(d*x+c)-6) 
*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+ 
c)))^(1/2)*a^2*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))+( 
-8*cos(d*x+c)^2-16*cos(d*x+c)-8)*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a 
+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*b^2*EllipticPi(cot(d*x+c)-csc(d 
*x+c),-1,(-(a-b)/(a+b))^(1/2))+(8*cos(d*x+c)^2+16*cos(d*x+c)+8)*A*(cos(d*x 
+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)* 
a^2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))+(8*cos(d*x+c)^2+ 
16*cos(d*x+c)+8)*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x 
+c))/(1+cos(d*x+c)))^(1/2)*a*b*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+ 
b))^(1/2))+(-5*cos(d*x+c)^2-10*cos(d*x+c)-5)*C*(cos(d*x+c)/(1+cos(d*x+c))) 
^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^2*EllipticE(cot(d 
*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))+(-5*cos(d*x+c)^2-10*cos(d*x+c)-5)*C 
*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c) 
))^(1/2)*a*b*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))+(-8*cos 
(d*x+c)^2-16*cos(d*x+c)-8)*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a 
+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^2*EllipticF(cot(d*x+c)-csc(d*x+c),( 
-(a-b)/(a+b))^(1/2))+(-16*cos(d*x+c)^2-32*cos(d*x+c)-16)*A*(cos(d*x+c)/...
 

Fricas [F]

\[ \int \frac {(a+b \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x, al 
gorithm="fricas")
 

Output:

integral((C*b*cos(d*x + c)^3 + C*a*cos(d*x + c)^2 + A*b*cos(d*x + c) + A*a 
)*sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(3/2), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+b*cos(d*x+c))**(3/2)*(A+C*cos(d*x+c)**2)/cos(d*x+c)**(3/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x, al 
gorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^( 
3/2), x)
 

Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x, al 
gorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^( 
3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^{3/2}} \,d x \] Input:

int(((A + C*cos(c + d*x)^2)*(a + b*cos(c + d*x))^(3/2))/cos(c + d*x)^(3/2) 
,x)
 

Output:

int(((A + C*cos(c + d*x)^2)*(a + b*cos(c + d*x))^(3/2))/cos(c + d*x)^(3/2) 
, x)
 

Reduce [F]

\[ \int \frac {(a+b \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) a b +\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) a^{2}+\left (\int \sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) b c +\left (\int \sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}d x \right ) a c \] Input:

int((a+b*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x)
 

Output:

int((sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x)))/cos(c + d*x),x)*a*b + in 
t((sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x)))/cos(c + d*x)**2,x)*a**2 + 
int(sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x))*cos(c + d*x),x)*b*c + int( 
sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x)),x)*a*c