\(\int \frac {\sqrt {\cos (c+d x)} (A+C \cos ^2(c+d x))}{\sqrt {a+b \cos (c+d x)}} \, dx\) [749]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 455 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {3 (a-b) \sqrt {a+b} C \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^2 d}-\frac {(3 a-2 b) \sqrt {a+b} C \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^2 d}-\frac {\sqrt {a+b} \left (3 a^2 C+4 b^2 (2 A+C)\right ) \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^3 d}-\frac {3 a C \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{4 b^2 d \sqrt {\cos (c+d x)}}+\frac {C \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 b d} \] Output:

3/4*(a-b)*(a+b)^(1/2)*C*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^ 
(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2 
)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d-1/4*(3*a-2*b)*(a+b)^(1/2)*C*cot(d*x 
+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/ 
(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2 
)/b^2/d-1/4*(a+b)^(1/2)*(3*a^2*C+4*b^2*(2*A+C))*cot(d*x+c)*EllipticPi((a+b 
*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,(-(a+b)/(a-b))^(1/ 
2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d-3/ 
4*a*C*(a+b*cos(d*x+c))^(1/2)*sin(d*x+c)/b^2/d/cos(d*x+c)^(1/2)+1/2*C*cos(d 
*x+c)^(1/2)*(a+b*cos(d*x+c))^(1/2)*sin(d*x+c)/b/d
 

Mathematica [A] (warning: unable to verify)

Time = 13.03 (sec) , antiderivative size = 497, normalized size of antiderivative = 1.09 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {4 b C \sqrt {\cos (c+d x)} (a+b \cos (c+d x)) \sin (c+d x)+\sqrt {1+\cos (c+d x)} \left (-6 a (a+b) C \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )-4 b (4 A b-a C+2 b C) \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+32 A b^2 \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+12 a^2 C \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+16 b^2 C \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )-3 a b C \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sec \left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {3}{2} (c+d x)\right )-6 a^2 C \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \tan \left (\frac {1}{2} (c+d x)\right )+3 a b C \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \tan \left (\frac {1}{2} (c+d x)\right )\right )}{8 b^2 d \sqrt {a+b \cos (c+d x)}} \] Input:

Integrate[(Sqrt[Cos[c + d*x]]*(A + C*Cos[c + d*x]^2))/Sqrt[a + b*Cos[c + d 
*x]],x]
 

Output:

(4*b*C*Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])*Sin[c + d*x] + Sqrt[1 + Cos 
[c + d*x]]*(-6*a*(a + b)*C*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + 
 d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - 4*b*(4*A* 
b - a*C + 2*b*C)*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*E 
llipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 32*A*b^2*Sqrt[(a + 
b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticPi[-1, ArcSin[Tan[(c 
 + d*x)/2]], (-a + b)/(a + b)] + 12*a^2*C*Sqrt[(a + b*Cos[c + d*x])/((a + 
b)*(1 + Cos[c + d*x]))]*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/ 
(a + b)] + 16*b^2*C*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x])) 
]*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - 3*a*b*C*Sqr 
t[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sin[(3*(c + d*x))/2] - 
 6*a^2*C*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Tan[(c + d*x)/2] + 3*a*b*C* 
Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Tan[(c + d*x)/2]))/(8*b^2*d*Sqrt[a + 
 b*Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 2.05 (sec) , antiderivative size = 457, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.351, Rules used = {3042, 3529, 27, 3042, 3540, 3042, 3532, 3042, 3288, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3529

\(\displaystyle \frac {\int \frac {-3 a C \cos ^2(c+d x)+2 b (2 A+C) \cos (c+d x)+a C}{2 \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{2 b}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 b d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {-3 a C \cos ^2(c+d x)+2 b (2 A+C) \cos (c+d x)+a C}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{4 b}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {-3 a C \sin \left (c+d x+\frac {\pi }{2}\right )^2+2 b (2 A+C) \sin \left (c+d x+\frac {\pi }{2}\right )+a C}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{4 b}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 b d}\)

\(\Big \downarrow \) 3540

\(\displaystyle \frac {\frac {\int \frac {3 C a^2+2 b C \cos (c+d x) a+\left (3 C a^2+4 b^2 (2 A+C)\right ) \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{2 b}-\frac {3 a C \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}}{4 b}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {3 C a^2+2 b C \sin \left (c+d x+\frac {\pi }{2}\right ) a+\left (3 C a^2+4 b^2 (2 A+C)\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 b}-\frac {3 a C \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}}{4 b}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 b d}\)

\(\Big \downarrow \) 3532

\(\displaystyle \frac {\frac {\left (3 a^2 C+4 b^2 (2 A+C)\right ) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}}dx+\int \frac {3 C a^2+2 b C \cos (c+d x) a}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{2 b}-\frac {3 a C \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}}{4 b}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (3 a^2 C+4 b^2 (2 A+C)\right ) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\int \frac {3 C a^2+2 b C \sin \left (c+d x+\frac {\pi }{2}\right ) a}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 b}-\frac {3 a C \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}}{4 b}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 b d}\)

\(\Big \downarrow \) 3288

\(\displaystyle \frac {\frac {\int \frac {3 C a^2+2 b C \sin \left (c+d x+\frac {\pi }{2}\right ) a}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} \left (3 a^2 C+4 b^2 (2 A+C)\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b d}}{2 b}-\frac {3 a C \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}}{4 b}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 b d}\)

\(\Big \downarrow \) 3477

\(\displaystyle \frac {\frac {3 a^2 C \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-a C (3 a-2 b) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx-\frac {2 \sqrt {a+b} \left (3 a^2 C+4 b^2 (2 A+C)\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b d}}{2 b}-\frac {3 a C \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}}{4 b}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3 a^2 C \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-a C (3 a-2 b) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} \left (3 a^2 C+4 b^2 (2 A+C)\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b d}}{2 b}-\frac {3 a C \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}}{4 b}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 b d}\)

\(\Big \downarrow \) 3295

\(\displaystyle \frac {\frac {3 a^2 C \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} \left (3 a^2 C+4 b^2 (2 A+C)\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b d}-\frac {2 C (3 a-2 b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{2 b}-\frac {3 a C \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}}{4 b}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 b d}\)

\(\Big \downarrow \) 3473

\(\displaystyle \frac {\frac {-\frac {2 \sqrt {a+b} \left (3 a^2 C+4 b^2 (2 A+C)\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b d}-\frac {2 C (3 a-2 b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}+\frac {6 C (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{d}}{2 b}-\frac {3 a C \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}}{4 b}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 b d}\)

Input:

Int[(Sqrt[Cos[c + d*x]]*(A + C*Cos[c + d*x]^2))/Sqrt[a + b*Cos[c + d*x]],x 
]
 

Output:

(C*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(2*b*d) + ((( 
6*(a - b)*Sqrt[a + b]*C*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d 
*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - S 
ec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d - (2*(3*a - 
 2*b)*Sqrt[a + b]*C*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]] 
/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c 
 + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d - (2*Sqrt[a + b 
]*(3*a^2*C + 4*b^2*(2*A + C))*Cot[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sq 
rt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b 
))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - 
b)])/(b*d))/(2*b) - (3*a*C*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(b*d*Sqr 
t[Cos[c + d*x]]))/(4*b)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3288
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[2*b*(Tan[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c 
*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*Ellipti 
cPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + 
 d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - 
 d^2, 0] && PosQ[(c + d)/b]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 3529
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] : 
> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 
1)/(d*f*(m + n + 2))), x] + Simp[1/(d*(m + n + 2))   Int[(a + b*Sin[e + f*x 
])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*( 
n + 1)) + (A*b*d*(m + n + 2) - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*x] + C* 
(a*d*m - b*c*(m + 1))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 
0])))
 

rule 3532
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[C/b^2   Int[Sqrt[a + b*Sin[e + f*x]] 
/Sqrt[c + d*Sin[e + f*x]], x], x] + Simp[1/b^2   Int[(A*b^2 - a^2*C + b*(b* 
B - 2*a*C)*Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x 
]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] & 
& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3540
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(Sqrt[c + d*Sin[e + f 
*x]]/(d*f*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[1/(2*d)   Int[(1/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]))*Simp[2*a*A*d - C*(b*c - a*d) - 
 2*(a*c*C - d*(A*b + a*B))*Sin[e + f*x] + (2*b*B*d - C*(b*c + a*d))*Sin[e + 
 f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a 
*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 
Maple [A] (verified)

Time = 16.87 (sec) , antiderivative size = 760, normalized size of antiderivative = 1.67

method result size
default \(\frac {\left (\left (-16 \cos \left (d x +c \right )-16\right ) A \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, b^{2} \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right )+\left (-6 \cos \left (d x +c \right )-6\right ) C \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a^{2} \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right )+\left (-8 \cos \left (d x +c \right )-8\right ) C \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, b^{2} \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right )+\left (3 \cos \left (d x +c \right )+3\right ) C \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a^{2} \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (3 \cos \left (d x +c \right )+3\right ) C \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a b \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (8 \cos \left (d x +c \right )+8\right ) A \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, b^{2} \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (-2 \cos \left (d x +c \right )-2\right ) C \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a b \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (4 \cos \left (d x +c \right )+4\right ) C \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, b^{2} \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )-3 C \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, a^{2} \sin \left (d x +c \right )+\left (-\cos \left (d x +c \right )+2\right ) \sin \left (d x +c \right ) C \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, a b +\sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (2 \cos \left (d x +c \right )+2\right ) C \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, b^{2}\right ) \sqrt {\cos \left (d x +c \right )}}{4 d \sqrt {a +b \cos \left (d x +c \right )}\, \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, b^{2}}\) \(760\)
parts \(\text {Expression too large to display}\) \(883\)

Input:

int(cos(d*x+c)^(1/2)*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(1/2),x,method=_R 
ETURNVERBOSE)
 

Output:

1/4/d*((-16*cos(d*x+c)-16)*A*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/ 
2)*b^2*EllipticPi(-csc(d*x+c)+cot(d*x+c),-1,(-(a-b)/(a+b))^(1/2))+(-6*cos( 
d*x+c)-6)*C*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^2*EllipticPi 
(-csc(d*x+c)+cot(d*x+c),-1,(-(a-b)/(a+b))^(1/2))+(-8*cos(d*x+c)-8)*C*(1/(a 
+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*b^2*EllipticPi(-csc(d*x+c)+cot( 
d*x+c),-1,(-(a-b)/(a+b))^(1/2))+(3*cos(d*x+c)+3)*C*(1/(a+b)*(a+b*cos(d*x+c 
))/(1+cos(d*x+c)))^(1/2)*a^2*EllipticE(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b 
))^(1/2))+(3*cos(d*x+c)+3)*C*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/ 
2)*a*b*EllipticE(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))+(8*cos(d*x+c 
)+8)*A*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*b^2*EllipticF(-csc( 
d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))+(-2*cos(d*x+c)-2)*C*(1/(a+b)*(a+b* 
cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*b*EllipticF(-csc(d*x+c)+cot(d*x+c),(-( 
a-b)/(a+b))^(1/2))+(4*cos(d*x+c)+4)*C*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x 
+c)))^(1/2)*b^2*EllipticF(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))-3*C 
*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^2*sin(d*x+c)+(-cos(d*x+c)+2)*sin(d*x+ 
c)*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b+sin(d*x+c)*cos(d*x+c)*(2*cos(d* 
x+c)+2)*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*b^2)*cos(d*x+c)^(1/2)/(a+b*cos 
(d*x+c))^(1/2)/(1+cos(d*x+c))/(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/b^2
 

Fricas [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {\cos \left (d x + c\right )}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(1/2),x, al 
gorithm="fricas")
 

Output:

integral((C*cos(d*x + c)^2 + A)*sqrt(cos(d*x + c))/sqrt(b*cos(d*x + c) + a 
), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(1/2)*(A+C*cos(d*x+c)**2)/(a+b*cos(d*x+c))**(1/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {\cos \left (d x + c\right )}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(1/2),x, al 
gorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*sqrt(cos(d*x + c))/sqrt(b*cos(d*x + c) + 
a), x)
 

Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {\cos \left (d x + c\right )}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(1/2),x, al 
gorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*sqrt(cos(d*x + c))/sqrt(b*cos(d*x + c) + 
a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )}{\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \] Input:

int((cos(c + d*x)^(1/2)*(A + C*cos(c + d*x)^2))/(a + b*cos(c + d*x))^(1/2) 
,x)
 

Output:

int((cos(c + d*x)^(1/2)*(A + C*cos(c + d*x)^2))/(a + b*cos(c + d*x))^(1/2) 
, x)
 

Reduce [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}}{\cos \left (d x +c \right ) b +a}d x \right ) c +\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right ) b +a}d x \right ) a \] Input:

int(cos(d*x+c)^(1/2)*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(1/2),x)
 

Output:

int((sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x))*cos(c + d*x)**2)/(cos(c + 
 d*x)*b + a),x)*c + int((sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x)))/(cos 
(c + d*x)*b + a),x)*a