\(\int \sqrt {a+b \cos (c+d x)} (B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^4(c+d x) \, dx\) [819]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 42, antiderivative size = 292 \[ \int \sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=-\frac {(b B+4 a C) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {(3 b B+4 a C) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{4 d \sqrt {a+b \cos (c+d x)}}+\frac {\left (4 a^2 B-b^2 B+4 a b C\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{4 a d \sqrt {a+b \cos (c+d x)}}+\frac {(b B+4 a C) \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 a d}+\frac {B \sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d} \] Output:

-1/4*(B*b+4*C*a)*(a+b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/ 
2)*(b/(a+b))^(1/2))/a/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+1/4*(3*B*b+4*C*a)*( 
(a+b*cos(d*x+c))/(a+b))^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2)*(b/(a+ 
b))^(1/2))/d/(a+b*cos(d*x+c))^(1/2)+1/4*(4*B*a^2-B*b^2+4*C*a*b)*((a+b*cos( 
d*x+c))/(a+b))^(1/2)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(b/(a+b))^(1/ 
2))/a/d/(a+b*cos(d*x+c))^(1/2)+1/4*(B*b+4*C*a)*(a+b*cos(d*x+c))^(1/2)*tan( 
d*x+c)/a/d+1/2*B*(a+b*cos(d*x+c))^(1/2)*sec(d*x+c)*tan(d*x+c)/d
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 4.79 (sec) , antiderivative size = 420, normalized size of antiderivative = 1.44 \[ \int \sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\frac {\frac {8 b B \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}+\frac {2 \left (8 a^2 B-3 b^2 B+4 a b C\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{a \sqrt {a+b \cos (c+d x)}}-\frac {2 i (b B+4 a C) \sqrt {-\frac {b (-1+\cos (c+d x))}{a+b}} \sqrt {\frac {b (1+\cos (c+d x))}{-a+b}} \csc (c+d x) \left (-2 a (a-b) E\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \left (-2 a \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )+b \operatorname {EllipticPi}\left (\frac {a+b}{a},i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )\right )\right )}{a^2 b \sqrt {-\frac {1}{a+b}}}+\frac {4 \sqrt {a+b \cos (c+d x)} (2 a B+(b B+4 a C) \cos (c+d x)) \sec (c+d x) \tan (c+d x)}{a}}{16 d} \] Input:

Integrate[Sqrt[a + b*Cos[c + d*x]]*(B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec 
[c + d*x]^4,x]
 

Output:

((8*b*B*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a 
 + b)])/Sqrt[a + b*Cos[c + d*x]] + (2*(8*a^2*B - 3*b^2*B + 4*a*b*C)*Sqrt[( 
a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(a 
*Sqrt[a + b*Cos[c + d*x]]) - ((2*I)*(b*B + 4*a*C)*Sqrt[-((b*(-1 + Cos[c + 
d*x]))/(a + b))]*Sqrt[(b*(1 + Cos[c + d*x]))/(-a + b)]*Csc[c + d*x]*(-2*a* 
(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], 
 (a + b)/(a - b)] + b*(-2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a 
 + b*Cos[c + d*x]]], (a + b)/(a - b)] + b*EllipticPi[(a + b)/a, I*ArcSinh[ 
Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)])))/(a^2*b* 
Sqrt[-(a + b)^(-1)]) + (4*Sqrt[a + b*Cos[c + d*x]]*(2*a*B + (b*B + 4*a*C)* 
Cos[c + d*x])*Sec[c + d*x]*Tan[c + d*x])/a)/(16*d)
 

Rubi [A] (verified)

Time = 2.67 (sec) , antiderivative size = 298, normalized size of antiderivative = 1.02, number of steps used = 23, number of rules used = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.548, Rules used = {3042, 3508, 3042, 3478, 27, 3042, 3534, 27, 3042, 3538, 25, 3042, 3134, 3042, 3132, 3481, 3042, 3142, 3042, 3140, 3286, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^4(c+d x) \sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )} \left (B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^4}dx\)

\(\Big \downarrow \) 3508

\(\displaystyle \int \sec ^3(c+d x) \sqrt {a+b \cos (c+d x)} (B+C \cos (c+d x))dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )} \left (B+C \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx\)

\(\Big \downarrow \) 3478

\(\displaystyle \frac {1}{2} \int \frac {\left (b B \cos ^2(c+d x)+2 (a B+2 b C) \cos (c+d x)+b B+4 a C\right ) \sec ^2(c+d x)}{2 \sqrt {a+b \cos (c+d x)}}dx+\frac {B \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{4} \int \frac {\left (b B \cos ^2(c+d x)+2 (a B+2 b C) \cos (c+d x)+b B+4 a C\right ) \sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}}dx+\frac {B \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \int \frac {b B \sin \left (c+d x+\frac {\pi }{2}\right )^2+2 (a B+2 b C) \sin \left (c+d x+\frac {\pi }{2}\right )+b B+4 a C}{\sin \left (c+d x+\frac {\pi }{2}\right )^2 \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {B \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3534

\(\displaystyle \frac {1}{4} \left (\frac {\int \frac {\left (4 B a^2+4 b C a+2 b B \cos (c+d x) a-b (b B+4 a C) \cos ^2(c+d x)-b^2 B\right ) \sec (c+d x)}{2 \sqrt {a+b \cos (c+d x)}}dx}{a}+\frac {(4 a C+b B) \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}\right )+\frac {B \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{4} \left (\frac {\int \frac {\left (4 B a^2+4 b C a+2 b B \cos (c+d x) a-b (b B+4 a C) \cos ^2(c+d x)-b^2 B\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{2 a}+\frac {(4 a C+b B) \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}\right )+\frac {B \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \left (\frac {\int \frac {4 B a^2+4 b C a+2 b B \sin \left (c+d x+\frac {\pi }{2}\right ) a-b (b B+4 a C) \sin \left (c+d x+\frac {\pi }{2}\right )^2-b^2 B}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a}+\frac {(4 a C+b B) \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}\right )+\frac {B \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3538

\(\displaystyle \frac {1}{4} \left (\frac {-\frac {\int -\frac {\left (b \left (4 B a^2+4 b C a-b^2 B\right )+a b (3 b B+4 a C) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b}-\left ((4 a C+b B) \int \sqrt {a+b \cos (c+d x)}dx\right )}{2 a}+\frac {(4 a C+b B) \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}\right )+\frac {B \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{4} \left (\frac {\frac {\int \frac {\left (b \left (4 B a^2+4 b C a-b^2 B\right )+a b (3 b B+4 a C) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b}-(4 a C+b B) \int \sqrt {a+b \cos (c+d x)}dx}{2 a}+\frac {(4 a C+b B) \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}\right )+\frac {B \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \left (\frac {\frac {\int \frac {b \left (4 B a^2+4 b C a-b^2 B\right )+a b (3 b B+4 a C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-(4 a C+b B) \int \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a}+\frac {(4 a C+b B) \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}\right )+\frac {B \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {1}{4} \left (\frac {\frac {\int \frac {b \left (4 B a^2+4 b C a-b^2 B\right )+a b (3 b B+4 a C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {(4 a C+b B) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{2 a}+\frac {(4 a C+b B) \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}\right )+\frac {B \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \left (\frac {\frac {\int \frac {b \left (4 B a^2+4 b C a-b^2 B\right )+a b (3 b B+4 a C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {(4 a C+b B) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{2 a}+\frac {(4 a C+b B) \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}\right )+\frac {B \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {1}{4} \left (\frac {\frac {\int \frac {b \left (4 B a^2+4 b C a-b^2 B\right )+a b (3 b B+4 a C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 (4 a C+b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{2 a}+\frac {(4 a C+b B) \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}\right )+\frac {B \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {1}{4} \left (\frac {\frac {b \left (4 a^2 B+4 a b C-b^2 B\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx+a b (4 a C+3 b B) \int \frac {1}{\sqrt {a+b \cos (c+d x)}}dx}{b}-\frac {2 (4 a C+b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{2 a}+\frac {(4 a C+b B) \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}\right )+\frac {B \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \left (\frac {\frac {b \left (4 a^2 B+4 a b C-b^2 B\right ) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a b (4 a C+3 b B) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 (4 a C+b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{2 a}+\frac {(4 a C+b B) \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}\right )+\frac {B \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {1}{4} \left (\frac {\frac {b \left (4 a^2 B+4 a b C-b^2 B\right ) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a b (4 a C+3 b B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 (4 a C+b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{2 a}+\frac {(4 a C+b B) \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}\right )+\frac {B \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \left (\frac {\frac {b \left (4 a^2 B+4 a b C-b^2 B\right ) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a b (4 a C+3 b B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 (4 a C+b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{2 a}+\frac {(4 a C+b B) \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}\right )+\frac {B \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {1}{4} \left (\frac {\frac {b \left (4 a^2 B+4 a b C-b^2 B\right ) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a b (4 a C+3 b B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 (4 a C+b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{2 a}+\frac {(4 a C+b B) \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}\right )+\frac {B \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3286

\(\displaystyle \frac {1}{4} \left (\frac {\frac {\frac {b \left (4 a^2 B+4 a b C-b^2 B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {\sec (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}+\frac {2 a b (4 a C+3 b B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 (4 a C+b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{2 a}+\frac {(4 a C+b B) \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}\right )+\frac {B \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \left (\frac {\frac {\frac {b \left (4 a^2 B+4 a b C-b^2 B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}+\frac {2 a b (4 a C+3 b B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 (4 a C+b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{2 a}+\frac {(4 a C+b B) \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}\right )+\frac {B \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {1}{4} \left (\frac {\frac {\frac {2 b \left (4 a^2 B+4 a b C-b^2 B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {2 a b (4 a C+3 b B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 (4 a C+b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{2 a}+\frac {(4 a C+b B) \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}\right )+\frac {B \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d}\)

Input:

Int[Sqrt[a + b*Cos[c + d*x]]*(B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d 
*x]^4,x]
 

Output:

(B*Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (((-2*(b*B 
+ 4*a*C)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/( 
d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) + ((2*a*b*(3*b*B + 4*a*C)*Sqrt[(a + 
b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a 
+ b*Cos[c + d*x]]) + (2*b*(4*a^2*B - b^2*B + 4*a*b*C)*Sqrt[(a + b*Cos[c + 
d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + b*Co 
s[c + d*x]]))/b)/(2*a) + ((b*B + 4*a*C)*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d 
*x])/(a*d))/4
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3286
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt 
[c + d*Sin[e + f*x]]   Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/(c + 
 d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]
 

rule 3478
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(B*a - A*b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f* 
x])^n/(f*(m + 1)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(a^2 - b^2))   Int[(a 
+ b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[c*(a*A - b*B)*( 
m + 1) + d*n*(A*b - a*B) + (d*(a*A - b*B)*(m + 1) - c*(A*b - a*B)*(m + 2))* 
Sin[e + f*x] - d*(A*b - a*B)*(m + n + 2)*Sin[e + f*x]^2, x], x], x] /; Free 
Q[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
 NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3508
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_ 
.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[1/b^2   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ 
[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - 
a*b*B + a^2*C, 0]
 

rule 3534
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b* 
c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int 
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b*c - a* 
d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - 
a*b*B + a^2*C) + (m + 1)*(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A 
*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ 
[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) | 
| EqQ[a, 0])))
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1289\) vs. \(2(280)=560\).

Time = 5.12 (sec) , antiderivative size = 1290, normalized size of antiderivative = 4.42

method result size
default \(\text {Expression too large to display}\) \(1290\)
parts \(\text {Expression too large to display}\) \(1601\)

Input:

int((a+b*cos(d*x+c))^(1/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x,me 
thod=_RETURNVERBOSE)
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2*b-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*(B*b+C*a 
)*(-cos(1/2*d*x+1/2*c)/a*(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2* 
c)^2)^(1/2)/(-1+2*cos(1/2*d*x+1/2*c)^2)+1/2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*( 
(2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+ 
b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^( 
1/2))-1/2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a- 
b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*Ell 
ipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+1/2/a*(sin(1/2*d*x+1/2*c)^2) 
^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2* 
c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*b*EllipticE(cos(1/2*d*x+1/2*c),(-2* 
b/(a-b))^(1/2))+1/2*b/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c 
)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c 
)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2)))+2*B*a*(-1/ 
2*cos(1/2*d*x+1/2*c)/a*(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c) 
^2)^(1/2)/(-1+2*cos(1/2*d*x+1/2*c)^2)^2+3/4*b/a^2*cos(1/2*d*x+1/2*c)*(-2*b 
*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(-1+2*cos(1/2*d*x+ 
1/2*c)^2)-1/8*b/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+ 
a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^( 
1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+3/8/a*(sin(1/2*d*x+1 
/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1...
 

Fricas [F(-1)]

Timed out. \[ \int \sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+b*cos(d*x+c))^(1/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^ 
4,x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F(-1)]

Timed out. \[ \int \sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+b*cos(d*x+c))**(1/2)*(B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c 
)**4,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sec \left (d x + c\right )^{4} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(1/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^ 
4,x, algorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*sqrt(b*cos(d*x + c) + a)*sec 
(d*x + c)^4, x)
 

Giac [F]

\[ \int \sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sec \left (d x + c\right )^{4} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(1/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^ 
4,x, algorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*sqrt(b*cos(d*x + c) + a)*sec 
(d*x + c)^4, x)
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {a+b\,\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^4} \,d x \] Input:

int(((B*cos(c + d*x) + C*cos(c + d*x)^2)*(a + b*cos(c + d*x))^(1/2))/cos(c 
 + d*x)^4,x)
 

Output:

int(((B*cos(c + d*x) + C*cos(c + d*x)^2)*(a + b*cos(c + d*x))^(1/2))/cos(c 
 + d*x)^4, x)
 

Reduce [F]

\[ \int \sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\left (\int \sqrt {\cos \left (d x +c \right ) b +a}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{4}d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right ) b +a}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{4}d x \right ) c \] Input:

int((a+b*cos(d*x+c))^(1/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x)
 

Output:

int(sqrt(cos(c + d*x)*b + a)*cos(c + d*x)*sec(c + d*x)**4,x)*b + int(sqrt( 
cos(c + d*x)*b + a)*cos(c + d*x)**2*sec(c + d*x)**4,x)*c