\(\int \frac {(B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\) [838]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 42, antiderivative size = 118 \[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {2 C \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {2 B \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}} \] Output:

2*C*((a+b*cos(d*x+c))/(a+b))^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2)*( 
b/(a+b))^(1/2))/d/(a+b*cos(d*x+c))^(1/2)+2*B*((a+b*cos(d*x+c))/(a+b))^(1/2 
)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(b/(a+b))^(1/2))/d/(a+b*cos(d*x+ 
c))^(1/2)
 

Mathematica [A] (verified)

Time = 0.60 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.69 \[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \left (C \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )+B \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )\right )}{d \sqrt {a+b \cos (c+d x)}} \] Input:

Integrate[((B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^2)/Sqrt[a + b* 
Cos[c + d*x]],x]
 

Output:

(2*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*(C*EllipticF[(c + d*x)/2, (2*b)/(a + 
 b)] + B*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)]))/(d*Sqrt[a + b*Cos[c + 
 d*x]])
 

Rubi [A] (verified)

Time = 0.95 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.262, Rules used = {3042, 3508, 3042, 3481, 3042, 3142, 3042, 3140, 3286, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^2 \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3508

\(\displaystyle \int \frac {\sec (c+d x) (B+C \cos (c+d x))}{\sqrt {a+b \cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {B+C \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3481

\(\displaystyle B \int \frac {\sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx+C \int \frac {1}{\sqrt {a+b \cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle B \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+C \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3142

\(\displaystyle B \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {C \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle B \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {C \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3140

\(\displaystyle B \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 C \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3286

\(\displaystyle \frac {B \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {\sec (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}+\frac {2 C \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {B \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}+\frac {2 C \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {2 B \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {2 C \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}\)

Input:

Int[((B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^2)/Sqrt[a + b*Cos[c 
+ d*x]],x]
 

Output:

(2*C*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + 
b)])/(d*Sqrt[a + b*Cos[c + d*x]]) + (2*B*Sqrt[(a + b*Cos[c + d*x])/(a + b) 
]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + b*Cos[c + d*x]])
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3286
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt 
[c + d*Sin[e + f*x]]   Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/(c + 
 d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3508
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_ 
.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[1/b^2   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ 
[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - 
a*b*B + a^2*C, 0]
 
Maple [A] (verified)

Time = 0.74 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.64

method result size
default \(\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a -b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a -b}{a -b}}\, \left (B \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), 2, \sqrt {-\frac {2 b}{a -b}}\right )-C \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )\right )}{\sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}\, d}\) \(194\)
parts \(\frac {2 B \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a -b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a -b}{a -b}}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), 2, \sqrt {-\frac {2 b}{a -b}}\right )}{\sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}\, d}-\frac {2 C \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a -b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a -b}{a -b}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )}{\sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}\, d}\) \(333\)

Input:

int((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(a+b*cos(d*x+c))^(1/2),x,me 
thod=_RETURNVERBOSE)
 

Output:

2*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x 
+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)*(B*EllipticP 
i(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))-C*EllipticF(cos(1/2*d*x+1/2*c), 
(-2*b/(a-b))^(1/2)))/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2 
)^(1/2)/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d
 

Fricas [F(-1)]

Timed out. \[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(a+b*cos(d*x+c))^(1/2 
),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {\left (B + C \cos {\left (c + d x \right )}\right ) \cos {\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}}{\sqrt {a + b \cos {\left (c + d x \right )}}}\, dx \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**2/(a+b*cos(d*x+c))**( 
1/2),x)
 

Output:

Integral((B + C*cos(c + d*x))*cos(c + d*x)*sec(c + d*x)**2/sqrt(a + b*cos( 
c + d*x)), x)
 

Maxima [F]

\[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sec \left (d x + c\right )^{2}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(a+b*cos(d*x+c))^(1/2 
),x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*sec(d*x + c)^2/sqrt(b*cos(d* 
x + c) + a), x)
 

Giac [F]

\[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sec \left (d x + c\right )^{2}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(a+b*cos(d*x+c))^(1/2 
),x, algorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*sec(d*x + c)^2/sqrt(b*cos(d* 
x + c) + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^2\,\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \] Input:

int((B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^2*(a + b*cos(c + d*x 
))^(1/2)),x)
 

Output:

int((B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^2*(a + b*cos(c + d*x 
))^(1/2)), x)
 

Reduce [F]

\[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}}{\cos \left (d x +c \right ) b +a}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}}{\cos \left (d x +c \right ) b +a}d x \right ) c \] Input:

int((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(a+b*cos(d*x+c))^(1/2),x)
 

Output:

int((sqrt(cos(c + d*x)*b + a)*cos(c + d*x)*sec(c + d*x)**2)/(cos(c + d*x)* 
b + a),x)*b + int((sqrt(cos(c + d*x)*b + a)*cos(c + d*x)**2*sec(c + d*x)** 
2)/(cos(c + d*x)*b + a),x)*c