\(\int \frac {\sqrt {a+b \cos (c+d x)} (B \cos (c+d x)+C \cos ^2(c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [900]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 44, antiderivative size = 351 \[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 (a-b) \sqrt {a+b} B \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d}+\frac {2 \sqrt {a+b} (b B-a (B-C)) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d}-\frac {2 \sqrt {a+b} C \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d} \] Output:

2*(a-b)*(a+b)^(1/2)*B*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1 
/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)* 
(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/d+2*(a+b)^(1/2)*(B*b-a*(B-C))*cot(d*x+c)* 
EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b 
))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/ 
d-2*(a+b)^(1/2)*C*cot(d*x+c)*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2) 
/cos(d*x+c)^(1/2),(a+b)/b,(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^( 
1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/d
                                                                                    
                                                                                    
 

Mathematica [A] (warning: unable to verify)

Time = 13.12 (sec) , antiderivative size = 273, normalized size of antiderivative = 0.78 \[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {-2 (a+b) B \sqrt {1+\cos (c+d x)} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )+2 (b (B-C)+a (B+C)) \sqrt {1+\cos (c+d x)} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+4 b C \sqrt {1+\cos (c+d x)} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+\frac {2 B (a+b \cos (c+d x)) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\cos (c+d x)}}}{d \sqrt {a+b \cos (c+d x)}} \] Input:

Integrate[(Sqrt[a + b*Cos[c + d*x]]*(B*Cos[c + d*x] + C*Cos[c + d*x]^2))/C 
os[c + d*x]^(5/2),x]
 

Output:

(-2*(a + b)*B*Sqrt[1 + Cos[c + d*x]]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 
 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 
 2*(b*(B - C) + a*(B + C))*Sqrt[1 + Cos[c + d*x]]*Sqrt[(a + b*Cos[c + d*x] 
)/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + 
b)/(a + b)] + 4*b*C*Sqrt[1 + Cos[c + d*x]]*Sqrt[(a + b*Cos[c + d*x])/((a + 
 b)*(1 + Cos[c + d*x]))]*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b) 
/(a + b)] + (2*B*(a + b*Cos[c + d*x])*Tan[(c + d*x)/2])/Sqrt[Cos[c + d*x]] 
)/(d*Sqrt[a + b*Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 1.32 (sec) , antiderivative size = 351, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {3042, 3508, 3042, 3470, 3042, 3288, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )} \left (B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 3508

\(\displaystyle \int \frac {\sqrt {a+b \cos (c+d x)} (B+C \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )} \left (B+C \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3470

\(\displaystyle \int \frac {a B+(b B+a C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+b C \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a B+(b B+a C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+b C \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3288

\(\displaystyle \int \frac {a B+(b B+a C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}\)

\(\Big \downarrow \) 3477

\(\displaystyle (b B-a (B-C)) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx+a B \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-\frac {2 C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle (b B-a (B-C)) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a B \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}\)

\(\Big \downarrow \) 3295

\(\displaystyle a B \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sqrt {a+b} (b B-a (B-C)) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}-\frac {2 C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}\)

\(\Big \downarrow \) 3473

\(\displaystyle \frac {2 \sqrt {a+b} (b B-a (B-C)) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}+\frac {2 B (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d}-\frac {2 C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}\)

Input:

Int[(Sqrt[a + b*Cos[c + d*x]]*(B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c + 
 d*x]^(5/2),x]
 

Output:

(2*(a - b)*Sqrt[a + b]*B*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + 
d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - 
Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d) + (2*S 
qrt[a + b]*(b*B - a*(B - C))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[ 
c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*( 
1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d) - 
(2*Sqrt[a + b]*C*Cot[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[ 
c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*( 
1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3288
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[2*b*(Tan[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c 
*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*Ellipti 
cPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + 
 d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - 
 d^2, 0] && PosQ[(c + d)/b]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3470
Int[(((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_) + (d_.)*sin[(e_.) + 
(f_.)*(x_)]])/((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Simp[B*(d 
/b^2)   Int[Sqrt[b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Int[(A* 
c + (B*c + A*d)*Sin[e + f*x])/((b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f* 
x]]), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 3508
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_ 
.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[1/b^2   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ 
[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - 
a*b*B + a^2*C, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(653\) vs. \(2(318)=636\).

Time = 22.74 (sec) , antiderivative size = 654, normalized size of antiderivative = 1.86

method result size
parts \(\frac {2 B \left (\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, b \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (-1-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (-1-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, b \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+b \cos \left (d x +c \right ) \sin \left (d x +c \right )+a \sin \left (d x +c \right )\right ) \sqrt {a +b \cos \left (d x +c \right )}}{d \sqrt {\cos \left (d x +c \right )}\, \left (b \cos \left (d x +c \right )^{2}+a \cos \left (d x +c \right )+b \cos \left (d x +c \right )+a \right )}-\frac {2 C \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, \left (\operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) a -\operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) b +2 b \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )\right )}{d \sqrt {a +b \cos \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )}}\) \(654\)
default \(\frac {2 \sqrt {a +b \cos \left (d x +c \right )}\, \left (-\frac {B \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right ) \left (\left (\left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ) a +\left (-\left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ) b -2 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) a -2 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) b +2 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) a +2 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) b \right )}{\left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1\right ) \cos \left (d x +c \right )^{\frac {3}{2}}}+\frac {2 C \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (-\operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) a +\operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) b -2 b \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right )\right ) \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}}{\sqrt {\cos \left (d x +c \right )}}\right )}{d \left (a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+a +b \right )}\) \(684\)

Input:

int((a+b*cos(d*x+c))^(1/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2), 
x,method=_RETURNVERBOSE)
 

Output:

2*B/d*((cos(d*x+c)^2+2*cos(d*x+c)+1)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/ 
(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*EllipticE(-csc(d*x+c)+cot(d 
*x+c),(-(a-b)/(a+b))^(1/2))+(cos(d*x+c)^2+2*cos(d*x+c)+1)*(cos(d*x+c)/(1+c 
os(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*b*Ellipt 
icE(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))+(-1-cos(d*x+c)^2-2*cos(d* 
x+c))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d 
*x+c)))^(1/2)*a*EllipticF(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))+(-1 
-cos(d*x+c)^2-2*cos(d*x+c))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+ 
b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*b*EllipticF(-csc(d*x+c)+cot(d*x+c),(-( 
a-b)/(a+b))^(1/2))+b*cos(d*x+c)*sin(d*x+c)+a*sin(d*x+c))*(a+b*cos(d*x+c))^ 
(1/2)/cos(d*x+c)^(1/2)/(b*cos(d*x+c)^2+a*cos(d*x+c)+b*cos(d*x+c)+a)-2*C/d* 
(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(EllipticF(-csc(d*x+c)+cot 
(d*x+c),(-(a-b)/(a+b))^(1/2))*a-EllipticF(-csc(d*x+c)+cot(d*x+c),(-(a-b)/( 
a+b))^(1/2))*b+2*b*EllipticPi(-csc(d*x+c)+cot(d*x+c),-1,(-(a-b)/(a+b))^(1/ 
2)))/(a+b*cos(d*x+c))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c)^( 
1/2)*(1+cos(d*x+c))
 

Fricas [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sqrt {b \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(1/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^ 
(5/2),x, algorithm="fricas")
 

Output:

integral((C*cos(d*x + c) + B)*sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(3/2), 
 x)
 

Sympy [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\left (B + C \cos {\left (c + d x \right )}\right ) \sqrt {a + b \cos {\left (c + d x \right )}}}{\cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate((a+b*cos(d*x+c))**(1/2)*(B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c 
)**(5/2),x)
 

Output:

Integral((B + C*cos(c + d*x))*sqrt(a + b*cos(c + d*x))/cos(c + d*x)**(3/2) 
, x)
 

Maxima [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sqrt {b \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(1/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^ 
(5/2),x, algorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*sqrt(b*cos(d*x + c) + a)/cos 
(d*x + c)^(5/2), x)
 

Giac [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sqrt {b \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(1/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^ 
(5/2),x, algorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*sqrt(b*cos(d*x + c) + a)/cos 
(d*x + c)^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {a+b\,\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^{5/2}} \,d x \] Input:

int(((B*cos(c + d*x) + C*cos(c + d*x)^2)*(a + b*cos(c + d*x))^(1/2))/cos(c 
 + d*x)^(5/2),x)
 

Output:

int(((B*cos(c + d*x) + C*cos(c + d*x)^2)*(a + b*cos(c + d*x))^(1/2))/cos(c 
 + d*x)^(5/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) c +\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) b \] Input:

int((a+b*cos(d*x+c))^(1/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2), 
x)
 

Output:

int((sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x)))/cos(c + d*x),x)*c + int( 
(sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x)))/cos(c + d*x)**2,x)*b