\(\int \frac {(a+b \cos (c+d x))^{3/2} (B \cos (c+d x)+C \cos ^2(c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\) [908]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 44, antiderivative size = 418 \[ \int \frac {(a+b \cos (c+d x))^{3/2} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 (a-b) \sqrt {a+b} (4 b B+3 a C) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a d}+\frac {2 \sqrt {a+b} \left (3 b^2 B-a b (4 B-6 C)+a^2 (B-3 C)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a d}-\frac {2 b \sqrt {a+b} C \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d}+\frac {2 a B \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \] Output:

2/3*(a-b)*(a+b)^(1/2)*(4*B*b+3*C*a)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^ 
(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c)) 
/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/d+2/3*(a+b)^(1/2)*(3*B*b^2- 
a*b*(4*B-6*C)+a^2*(B-3*C))*cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+ 
b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^( 
1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/d-2*b*(a+b)^(1/2)*C*cot(d*x+c)*Ellip 
ticPi((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,(-(a+b)/ 
(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2 
)/d+2/3*a*B*(a+b*cos(d*x+c))^(1/2)*sin(d*x+c)/d/cos(d*x+c)^(3/2)
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 6.78 (sec) , antiderivative size = 1236, normalized size of antiderivative = 2.96 \[ \int \frac {(a+b \cos (c+d x))^{3/2} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx =\text {Too large to display} \] Input:

Integrate[((a + b*Cos[c + d*x])^(3/2)*(B*Cos[c + d*x] + C*Cos[c + d*x]^2)) 
/Cos[c + d*x]^(7/2),x]
 

Output:

((-4*a*(a^2*B - b^2*B + 3*a*b*C)*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b 
)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c 
 + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b 
*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + 
d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - 4*a*(-4 
*a*b*B - 3*a^2*C + 3*b^2*C)*((Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]* 
Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + 
d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Co 
s[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x 
)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - (Sqrt[((a 
+ b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d 
*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d* 
x]*EllipticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2 
)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/(b*Sqrt[Cos[c + d*x]]* 
Sqrt[a + b*Cos[c + d*x]])) + 2*(-4*b^2*B - 3*a*b*C)*((I*Cos[(c + d*x)/2]*S 
qrt[a + b*Cos[c + d*x]]*EllipticE[I*ArcSinh[Sin[(c + d*x)/2]/Sqrt[Cos[c + 
d*x]]], (-2*a)/(-a - b)]*Sec[c + d*x])/(b*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + 
d*x]]*Sqrt[((a + b*Cos[c + d*x])*Sec[c + d*x])/(a + b)]) + (2*a*((a*Sqrt[( 
(a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c 
+ d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[...
 

Rubi [A] (verified)

Time = 1.85 (sec) , antiderivative size = 419, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.295, Rules used = {3042, 3508, 3042, 3468, 27, 3042, 3532, 3042, 3288, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \cos (c+d x))^{3/2} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2} \left (B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 3508

\(\displaystyle \int \frac {(a+b \cos (c+d x))^{3/2} (B+C \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2} \left (B+C \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 3468

\(\displaystyle \frac {2}{3} \int \frac {3 b^2 C \cos ^2(c+d x)+\left (B a^2+6 b C a+3 b^2 B\right ) \cos (c+d x)+a (4 b B+3 a C)}{2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+\frac {2 a B \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {3 b^2 C \cos ^2(c+d x)+\left (B a^2+6 b C a+3 b^2 B\right ) \cos (c+d x)+a (4 b B+3 a C)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+\frac {2 a B \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {3 b^2 C \sin \left (c+d x+\frac {\pi }{2}\right )^2+\left (B a^2+6 b C a+3 b^2 B\right ) \sin \left (c+d x+\frac {\pi }{2}\right )+a (4 b B+3 a C)}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a B \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3532

\(\displaystyle \frac {1}{3} \left (\int \frac {a (4 b B+3 a C)+\left (B a^2+6 b C a+3 b^2 B\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+3 b^2 C \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}}dx\right )+\frac {2 a B \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\int \frac {a (4 b B+3 a C)+\left (B a^2+6 b C a+3 b^2 B\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 b^2 C \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 a B \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3288

\(\displaystyle \frac {1}{3} \left (\int \frac {a (4 b B+3 a C)+\left (B a^2+6 b C a+3 b^2 B\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {6 b C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}\right )+\frac {2 a B \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3477

\(\displaystyle \frac {1}{3} \left (\left (a^2 (B-3 C)-a b (4 B-6 C)+3 b^2 B\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx+a (3 a C+4 b B) \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-\frac {6 b C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}\right )+\frac {2 a B \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\left (a^2 (B-3 C)-a b (4 B-6 C)+3 b^2 B\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a (3 a C+4 b B) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {6 b C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}\right )+\frac {2 a B \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3295

\(\displaystyle \frac {1}{3} \left (a (3 a C+4 b B) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sqrt {a+b} \left (a^2 (B-3 C)-a b (4 B-6 C)+3 b^2 B\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}-\frac {6 b C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}\right )+\frac {2 a B \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3473

\(\displaystyle \frac {1}{3} \left (\frac {2 \sqrt {a+b} \left (a^2 (B-3 C)-a b (4 B-6 C)+3 b^2 B\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}+\frac {2 (a-b) \sqrt {a+b} (3 a C+4 b B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d}-\frac {6 b C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}\right )+\frac {2 a B \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

Input:

Int[((a + b*Cos[c + d*x])^(3/2)*(B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c 
 + d*x]^(7/2),x]
 

Output:

((2*(a - b)*Sqrt[a + b]*(4*b*B + 3*a*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt 
[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b)) 
]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b) 
])/(a*d) + (2*Sqrt[a + b]*(3*b^2*B - a*b*(4*B - 6*C) + a^2*(B - 3*C))*Cot[ 
c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c 
 + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[ 
(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d) - (6*b*Sqrt[a + b]*C*Cot[c + d*x]*E 
llipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos 
[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqr 
t[(a*(1 + Sec[c + d*x]))/(a - b)])/d)/3 + (2*a*B*Sqrt[a + b*Cos[c + d*x]]* 
Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3288
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[2*b*(Tan[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c 
*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*Ellipti 
cPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + 
 d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - 
 d^2, 0] && PosQ[(c + d)/b]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3468
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(-(b*c - a*d))*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c 
 + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(d*(n + 
1)*(c^2 - d^2))   Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n 
+ 1)*Simp[b*(b*c - a*d)*(B*c - A*d)*(m - 1) + a*d*(a*A*c + b*B*c - (A*b + a 
*B)*d)*(n + 1) + (b*(b*d*(B*c - A*d) + a*(A*c*d + B*(c^2 - 2*d^2)))*(n + 1) 
 - a*(b*c - a*d)*(B*c - A*d)*(n + 2))*Sin[e + f*x] + b*(d*(A*b*c + a*B*c - 
a*A*d)*(m + n + 1) - b*B*(c^2*m + d^2*(n + 1)))*Sin[e + f*x]^2, x], x], x] 
/; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2 
, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -1]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 3508
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_ 
.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[1/b^2   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ 
[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - 
a*b*B + a^2*C, 0]
 

rule 3532
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[C/b^2   Int[Sqrt[a + b*Sin[e + f*x]] 
/Sqrt[c + d*Sin[e + f*x]], x], x] + Simp[1/b^2   Int[(A*b^2 - a^2*C + b*(b* 
B - 2*a*C)*Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x 
]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] & 
& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1353\) vs. \(2(375)=750\).

Time = 14.80 (sec) , antiderivative size = 1354, normalized size of antiderivative = 3.24

method result size
parts \(\text {Expression too large to display}\) \(1354\)
default \(\text {Expression too large to display}\) \(1375\)

Input:

int((a+b*cos(d*x+c))^(3/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2), 
x,method=_RETURNVERBOSE)
 

Output:

-2/3*B/d*((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+c 
os(d*x+c)))^(1/2)*a*b*EllipticE(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2 
))*(-4*cos(d*x+c)^3-8*cos(d*x+c)^2-4*cos(d*x+c))+(cos(d*x+c)/(1+cos(d*x+c) 
))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*b^2*EllipticE(-cs 
c(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))*(-4*cos(d*x+c)^3-8*cos(d*x+c)^2- 
4*cos(d*x+c))+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/ 
(1+cos(d*x+c)))^(1/2)*a^2*EllipticF(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^ 
(1/2))*(cos(d*x+c)^3+2*cos(d*x+c)^2+cos(d*x+c))+(cos(d*x+c)/(1+cos(d*x+c)) 
)^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*b*EllipticF(-csc 
(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))*(4*cos(d*x+c)^3+8*cos(d*x+c)^2+4* 
cos(d*x+c))+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1 
+cos(d*x+c)))^(1/2)*b^2*EllipticF(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1 
/2))*(3*cos(d*x+c)^3+6*cos(d*x+c)^2+3*cos(d*x+c))+(-cos(d*x+c)-1)*sin(d*x+ 
c)*a^2+sin(d*x+c)*cos(d*x+c)*(-cos(d*x+c)-5)*a*b-4*b^2*cos(d*x+c)^2*sin(d* 
x+c))*(a+b*cos(d*x+c))^(1/2)/cos(d*x+c)^(3/2)/(b*cos(d*x+c)^2+a*cos(d*x+c) 
+b*cos(d*x+c)+a)-2*C/d*((2*cos(d*x+c)^2+4*cos(d*x+c)+2)*b^2*(cos(d*x+c)/(1 
+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*Ellipt 
icPi(-csc(d*x+c)+cot(d*x+c),-1,(-(a-b)/(a+b))^(1/2))+(-1-cos(d*x+c)^2-2*co 
s(d*x+c))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+c 
os(d*x+c)))^(1/2)*a^2*EllipticE(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(...
 

Fricas [F]

\[ \int \frac {(a+b \cos (c+d x))^{3/2} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(3/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^ 
(7/2),x, algorithm="fricas")
 

Output:

integral((C*b*cos(d*x + c)^2 + B*a + (C*a + B*b)*cos(d*x + c))*sqrt(b*cos( 
d*x + c) + a)/cos(d*x + c)^(5/2), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^{3/2} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+b*cos(d*x+c))**(3/2)*(B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c 
)**(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^{3/2} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(3/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^ 
(7/2),x, algorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*(b*cos(d*x + c) + a)^(3/2)/c 
os(d*x + c)^(7/2), x)
 

Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^{3/2} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(3/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^ 
(7/2),x, algorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*(b*cos(d*x + c) + a)^(3/2)/c 
os(d*x + c)^(7/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^{3/2} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )\right )\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^{7/2}} \,d x \] Input:

int(((B*cos(c + d*x) + C*cos(c + d*x)^2)*(a + b*cos(c + d*x))^(3/2))/cos(c 
 + d*x)^(7/2),x)
 

Output:

int(((B*cos(c + d*x) + C*cos(c + d*x)^2)*(a + b*cos(c + d*x))^(3/2))/cos(c 
 + d*x)^(7/2), x)
 

Reduce [F]

\[ \int \frac {(a+b \cos (c+d x))^{3/2} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) b c +\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}}d x \right ) a b +\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) a c +\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) b^{2} \] Input:

int((a+b*cos(d*x+c))^(3/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2), 
x)
 

Output:

int((sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x)))/cos(c + d*x),x)*b*c + in 
t((sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x)))/cos(c + d*x)**3,x)*a*b + i 
nt((sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x)))/cos(c + d*x)**2,x)*a*c + 
int((sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x)))/cos(c + d*x)**2,x)*b**2