\(\int (a+b \cos (c+d x)) (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^3(c+d x) \, dx\) [943]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 39, antiderivative size = 69 \[ \int (a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=b C x+\frac {(2 b B+a (A+2 C)) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {(A b+a B) \tan (c+d x)}{d}+\frac {a A \sec (c+d x) \tan (c+d x)}{2 d} \] Output:

b*C*x+1/2*(2*B*b+a*(A+2*C))*arctanh(sin(d*x+c))/d+(A*b+B*a)*tan(d*x+c)/d+1 
/2*a*A*sec(d*x+c)*tan(d*x+c)/d
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.33 \[ \int (a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=b C x+\frac {b B \coth ^{-1}(\sin (c+d x))}{d}+\frac {a C \coth ^{-1}(\sin (c+d x))}{d}+\frac {a A \text {arctanh}(\sin (c+d x))}{2 d}+\frac {A b \tan (c+d x)}{d}+\frac {a B \tan (c+d x)}{d}+\frac {a A \sec (c+d x) \tan (c+d x)}{2 d} \] Input:

Integrate[(a + b*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec 
[c + d*x]^3,x]
 

Output:

b*C*x + (b*B*ArcCoth[Sin[c + d*x]])/d + (a*C*ArcCoth[Sin[c + d*x]])/d + (a 
*A*ArcTanh[Sin[c + d*x]])/(2*d) + (A*b*Tan[c + d*x])/d + (a*B*Tan[c + d*x] 
)/d + (a*A*Sec[c + d*x]*Tan[c + d*x])/(2*d)
 

Rubi [A] (verified)

Time = 0.61 (sec) , antiderivative size = 73, normalized size of antiderivative = 1.06, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {3042, 3510, 25, 3042, 3500, 3042, 3214, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^3(c+d x) (a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right ) \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx\)

\(\Big \downarrow \) 3510

\(\displaystyle \frac {a A \tan (c+d x) \sec (c+d x)}{2 d}-\frac {1}{2} \int -\left (\left (2 b C \cos ^2(c+d x)+(2 b B+a (A+2 C)) \cos (c+d x)+2 (A b+a B)\right ) \sec ^2(c+d x)\right )dx\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} \int \left (2 b C \cos ^2(c+d x)+(2 b B+a (A+2 C)) \cos (c+d x)+2 (A b+a B)\right ) \sec ^2(c+d x)dx+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \int \frac {2 b C \sin \left (c+d x+\frac {\pi }{2}\right )^2+(2 b B+a (A+2 C)) \sin \left (c+d x+\frac {\pi }{2}\right )+2 (A b+a B)}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {1}{2} \left (\int (2 b B+a (A+2 C)+2 b C \cos (c+d x)) \sec (c+d x)dx+\frac {2 (a B+A b) \tan (c+d x)}{d}\right )+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\int \frac {2 b B+a (A+2 C)+2 b C \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 (a B+A b) \tan (c+d x)}{d}\right )+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 3214

\(\displaystyle \frac {1}{2} \left ((a (A+2 C)+2 b B) \int \sec (c+d x)dx+\frac {2 (a B+A b) \tan (c+d x)}{d}+2 b C x\right )+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left ((a (A+2 C)+2 b B) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {2 (a B+A b) \tan (c+d x)}{d}+2 b C x\right )+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {1}{2} \left (\frac {(a (A+2 C)+2 b B) \text {arctanh}(\sin (c+d x))}{d}+\frac {2 (a B+A b) \tan (c+d x)}{d}+2 b C x\right )+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d}\)

Input:

Int[(a + b*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d 
*x]^3,x]
 

Output:

(a*A*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (2*b*C*x + ((2*b*B + a*(A + 2*C))* 
ArcTanh[Sin[c + d*x]])/d + (2*(A*b + a*B)*Tan[c + d*x])/d)/2
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3214
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[b*(x/d), x] - Simp[(b*c - a*d)/d   Int[1/(c + d 
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 

rule 3510
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f 
_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(A*b^2 - a*b*B + a^2*C)*Cos[ 
e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] - S 
imp[1/(b^2*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*( 
m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d + b^2*d*(m 
 + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1)) 
))*Sin[e + f*x] - b*C*d*(m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; F 
reeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 
 0] && LtQ[m, -1]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 0.48 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.33

method result size
parts \(\frac {a A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}+\frac {\left (A b +B a \right ) \tan \left (d x +c \right )}{d}+\frac {\left (B b +C a \right ) \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}+\frac {C b \left (d x +c \right )}{d}\) \(92\)
derivativedivides \(\frac {a A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+B a \tan \left (d x +c \right )+C a \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+A b \tan \left (d x +c \right )+B b \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+C b \left (d x +c \right )}{d}\) \(100\)
default \(\frac {a A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+B a \tan \left (d x +c \right )+C a \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+A b \tan \left (d x +c \right )+B b \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+C b \left (d x +c \right )}{d}\) \(100\)
parallelrisch \(\frac {-\left (2 B b +a \left (A +2 C \right )\right ) \left (1+\cos \left (2 d x +2 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+\left (2 B b +a \left (A +2 C \right )\right ) \left (1+\cos \left (2 d x +2 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+2 C b d x \cos \left (2 d x +2 c \right )+\left (2 A b +2 B a \right ) \sin \left (2 d x +2 c \right )+2 C b d x +2 a A \sin \left (d x +c \right )}{2 d \left (1+\cos \left (2 d x +2 c \right )\right )}\) \(143\)
risch \(b C x -\frac {i \left (A a \,{\mathrm e}^{3 i \left (d x +c \right )}-2 A b \,{\mathrm e}^{2 i \left (d x +c \right )}-2 B a \,{\mathrm e}^{2 i \left (d x +c \right )}-a A \,{\mathrm e}^{i \left (d x +c \right )}-2 A b -2 B a \right )}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}+\frac {a A \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B b}{d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C a}{d}-\frac {a A \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B b}{d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C a}{d}\) \(203\)
norman \(\frac {b C x +\frac {\left (a A -2 A b -2 B a \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{d}+\frac {\left (a A +2 A b +2 B a \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+b C x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+b C x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+b C x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}+\frac {4 \left (a A -A b -B a \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{d}+\frac {4 \left (a A +A b +B a \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{d}+\frac {6 a A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{d}-2 b C x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 b C x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{2}}-\frac {\left (a A +2 B b +2 C a \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {\left (a A +2 B b +2 C a \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(297\)

Input:

int((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x,method 
=_RETURNVERBOSE)
 

Output:

a*A/d*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c)))+(A*b+B*a)* 
tan(d*x+c)/d+(B*b+C*a)/d*ln(sec(d*x+c)+tan(d*x+c))+C*b/d*(d*x+c)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.71 \[ \int (a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {4 \, C b d x \cos \left (d x + c\right )^{2} + {\left ({\left (A + 2 \, C\right )} a + 2 \, B b\right )} \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left ({\left (A + 2 \, C\right )} a + 2 \, B b\right )} \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (A a + 2 \, {\left (B a + A b\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{2}} \] Input:

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, 
 algorithm="fricas")
 

Output:

1/4*(4*C*b*d*x*cos(d*x + c)^2 + ((A + 2*C)*a + 2*B*b)*cos(d*x + c)^2*log(s 
in(d*x + c) + 1) - ((A + 2*C)*a + 2*B*b)*cos(d*x + c)^2*log(-sin(d*x + c) 
+ 1) + 2*(A*a + 2*(B*a + A*b)*cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^ 
2)
 

Sympy [F]

\[ \int (a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\int \left (a + b \cos {\left (c + d x \right )}\right ) \left (A + B \cos {\left (c + d x \right )} + C \cos ^{2}{\left (c + d x \right )}\right ) \sec ^{3}{\left (c + d x \right )}\, dx \] Input:

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**3, 
x)
 

Output:

Integral((a + b*cos(c + d*x))*(A + B*cos(c + d*x) + C*cos(c + d*x)**2)*sec 
(c + d*x)**3, x)
 

Maxima [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.88 \[ \int (a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {4 \, {\left (d x + c\right )} C b - A a {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 2 \, C a {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 2 \, B b {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 4 \, B a \tan \left (d x + c\right ) + 4 \, A b \tan \left (d x + c\right )}{4 \, d} \] Input:

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, 
 algorithm="maxima")
 

Output:

1/4*(4*(d*x + c)*C*b - A*a*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin( 
d*x + c) + 1) + log(sin(d*x + c) - 1)) + 2*C*a*(log(sin(d*x + c) + 1) - lo 
g(sin(d*x + c) - 1)) + 2*B*b*(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1 
)) + 4*B*a*tan(d*x + c) + 4*A*b*tan(d*x + c))/d
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 168 vs. \(2 (65) = 130\).

Time = 0.14 (sec) , antiderivative size = 168, normalized size of antiderivative = 2.43 \[ \int (a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {2 \, {\left (d x + c\right )} C b + {\left (A a + 2 \, C a + 2 \, B b\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - {\left (A a + 2 \, C a + 2 \, B b\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + \frac {2 \, {\left (A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, A b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, A b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}}}{2 \, d} \] Input:

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, 
 algorithm="giac")
 

Output:

1/2*(2*(d*x + c)*C*b + (A*a + 2*C*a + 2*B*b)*log(abs(tan(1/2*d*x + 1/2*c) 
+ 1)) - (A*a + 2*C*a + 2*B*b)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) + 2*(A*a* 
tan(1/2*d*x + 1/2*c)^3 - 2*B*a*tan(1/2*d*x + 1/2*c)^3 - 2*A*b*tan(1/2*d*x 
+ 1/2*c)^3 + A*a*tan(1/2*d*x + 1/2*c) + 2*B*a*tan(1/2*d*x + 1/2*c) + 2*A*b 
*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^2)/d
 

Mupad [B] (verification not implemented)

Time = 1.05 (sec) , antiderivative size = 164, normalized size of antiderivative = 2.38 \[ \int (a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {2\,\left (\frac {A\,a\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{2}+B\,b\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )+C\,a\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )+C\,b\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\right )}{d}+\frac {\frac {A\,a\,\sin \left (c+d\,x\right )}{2}+\frac {A\,b\,\sin \left (2\,c+2\,d\,x\right )}{2}+\frac {B\,a\,\sin \left (2\,c+2\,d\,x\right )}{2}}{d\,\left (\frac {\cos \left (2\,c+2\,d\,x\right )}{2}+\frac {1}{2}\right )} \] Input:

int(((a + b*cos(c + d*x))*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + 
 d*x)^3,x)
 

Output:

(2*((A*a*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/2 + B*b*atanh(sin(c 
/2 + (d*x)/2)/cos(c/2 + (d*x)/2)) + C*a*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + 
 (d*x)/2)) + C*b*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2))))/d + ((A*a*s 
in(c + d*x))/2 + (A*b*sin(2*c + 2*d*x))/2 + (B*a*sin(2*c + 2*d*x))/2)/(d*( 
cos(2*c + 2*d*x)/2 + 1/2))
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 415, normalized size of antiderivative = 6.01 \[ \int (a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {-\cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{2} a^{2}-2 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{2} a c -2 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{2} b^{2}+\cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) a^{2}+2 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) a c +2 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) b^{2}+\cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{2} a^{2}+2 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{2} a c +2 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{2} b^{2}-\cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) a^{2}-2 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) a c -2 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) b^{2}+2 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2} b c d x -\cos \left (d x +c \right ) \sin \left (d x +c \right ) a^{2}-2 \cos \left (d x +c \right ) b c d x +4 \sin \left (d x +c \right )^{3} a b -4 \sin \left (d x +c \right ) a b}{2 \cos \left (d x +c \right ) d \left (\sin \left (d x +c \right )^{2}-1\right )} \] Input:

int((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x)
 

Output:

( - cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*a**2 - 2*cos(c 
+ d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*a*c - 2*cos(c + d*x)*log( 
tan((c + d*x)/2) - 1)*sin(c + d*x)**2*b**2 + cos(c + d*x)*log(tan((c + d*x 
)/2) - 1)*a**2 + 2*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*a*c + 2*cos(c + 
d*x)*log(tan((c + d*x)/2) - 1)*b**2 + cos(c + d*x)*log(tan((c + d*x)/2) + 
1)*sin(c + d*x)**2*a**2 + 2*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*sin(c + 
 d*x)**2*a*c + 2*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**2*b* 
*2 - cos(c + d*x)*log(tan((c + d*x)/2) + 1)*a**2 - 2*cos(c + d*x)*log(tan( 
(c + d*x)/2) + 1)*a*c - 2*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*b**2 + 2* 
cos(c + d*x)*sin(c + d*x)**2*b*c*d*x - cos(c + d*x)*sin(c + d*x)*a**2 - 2* 
cos(c + d*x)*b*c*d*x + 4*sin(c + d*x)**3*a*b - 4*sin(c + d*x)*a*b)/(2*cos( 
c + d*x)*d*(sin(c + d*x)**2 - 1))