\(\int (a+b \cos (c+d x))^2 (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^3(c+d x) \, dx\) [951]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 41, antiderivative size = 118 \[ \int (a+b \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=b (b B+2 a C) x+\frac {\left (2 A b^2+4 a b B+a^2 (A+2 C)\right ) \text {arctanh}(\sin (c+d x))}{2 d}-\frac {b^2 (A-2 C) \sin (c+d x)}{2 d}+\frac {a (A b+a B) \tan (c+d x)}{d}+\frac {A (a+b \cos (c+d x))^2 \sec (c+d x) \tan (c+d x)}{2 d} \] Output:

b*(B*b+2*C*a)*x+1/2*(2*A*b^2+4*B*a*b+a^2*(A+2*C))*arctanh(sin(d*x+c))/d-1/ 
2*b^2*(A-2*C)*sin(d*x+c)/d+a*(A*b+B*a)*tan(d*x+c)/d+1/2*A*(a+b*cos(d*x+c)) 
^2*sec(d*x+c)*tan(d*x+c)/d
                                                                                    
                                                                                    
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(277\) vs. \(2(118)=236\).

Time = 3.99 (sec) , antiderivative size = 277, normalized size of antiderivative = 2.35 \[ \int (a+b \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {4 b (b B+2 a C) (c+d x)-2 \left (2 A b^2+4 a b B+a^2 (A+2 C)\right ) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+2 \left (2 A b^2+4 a b B+a^2 (A+2 C)\right ) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+\frac {a^2 A}{\left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}+\frac {4 a (2 A b+a B) \sin \left (\frac {1}{2} (c+d x)\right )}{\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )}-\frac {a^2 A}{\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}+\frac {4 a (2 A b+a B) \sin \left (\frac {1}{2} (c+d x)\right )}{\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )}+4 b^2 C \sin (c+d x)}{4 d} \] Input:

Integrate[(a + b*Cos[c + d*x])^2*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*S 
ec[c + d*x]^3,x]
 

Output:

(4*b*(b*B + 2*a*C)*(c + d*x) - 2*(2*A*b^2 + 4*a*b*B + a^2*(A + 2*C))*Log[C 
os[(c + d*x)/2] - Sin[(c + d*x)/2]] + 2*(2*A*b^2 + 4*a*b*B + a^2*(A + 2*C) 
)*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + (a^2*A)/(Cos[(c + d*x)/2] - S 
in[(c + d*x)/2])^2 + (4*a*(2*A*b + a*B)*Sin[(c + d*x)/2])/(Cos[(c + d*x)/2 
] - Sin[(c + d*x)/2]) - (a^2*A)/(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^2 + 
(4*a*(2*A*b + a*B)*Sin[(c + d*x)/2])/(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]) 
 + 4*b^2*C*Sin[c + d*x])/(4*d)
 

Rubi [A] (verified)

Time = 0.96 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.02, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.268, Rules used = {3042, 3526, 3042, 3510, 25, 3042, 3502, 3042, 3214, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^3(c+d x) (a+b \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2 \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx\)

\(\Big \downarrow \) 3526

\(\displaystyle \frac {1}{2} \int (a+b \cos (c+d x)) \left (-b (A-2 C) \cos ^2(c+d x)+(2 b B+a (A+2 C)) \cos (c+d x)+2 (A b+a B)\right ) \sec ^2(c+d x)dx+\frac {A \tan (c+d x) \sec (c+d x) (a+b \cos (c+d x))^2}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right ) \left (-b (A-2 C) \sin \left (c+d x+\frac {\pi }{2}\right )^2+(2 b B+a (A+2 C)) \sin \left (c+d x+\frac {\pi }{2}\right )+2 (A b+a B)\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {A \tan (c+d x) \sec (c+d x) (a+b \cos (c+d x))^2}{2 d}\)

\(\Big \downarrow \) 3510

\(\displaystyle \frac {1}{2} \left (\frac {2 a (a B+A b) \tan (c+d x)}{d}-\int -\left (\left ((A+2 C) a^2+4 b B a+2 A b^2-b^2 (A-2 C) \cos ^2(c+d x)+2 b (b B+2 a C) \cos (c+d x)\right ) \sec (c+d x)\right )dx\right )+\frac {A \tan (c+d x) \sec (c+d x) (a+b \cos (c+d x))^2}{2 d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} \left (\int \left ((A+2 C) a^2+4 b B a+2 A b^2-b^2 (A-2 C) \cos ^2(c+d x)+2 b (b B+2 a C) \cos (c+d x)\right ) \sec (c+d x)dx+\frac {2 a (a B+A b) \tan (c+d x)}{d}\right )+\frac {A \tan (c+d x) \sec (c+d x) (a+b \cos (c+d x))^2}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\int \frac {(A+2 C) a^2+4 b B a+2 A b^2-b^2 (A-2 C) \sin \left (c+d x+\frac {\pi }{2}\right )^2+2 b (b B+2 a C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 a (a B+A b) \tan (c+d x)}{d}\right )+\frac {A \tan (c+d x) \sec (c+d x) (a+b \cos (c+d x))^2}{2 d}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {1}{2} \left (\int \left ((A+2 C) a^2+4 b B a+2 A b^2+2 b (b B+2 a C) \cos (c+d x)\right ) \sec (c+d x)dx+\frac {2 a (a B+A b) \tan (c+d x)}{d}-\frac {b^2 (A-2 C) \sin (c+d x)}{d}\right )+\frac {A \tan (c+d x) \sec (c+d x) (a+b \cos (c+d x))^2}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\int \frac {(A+2 C) a^2+4 b B a+2 A b^2+2 b (b B+2 a C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 a (a B+A b) \tan (c+d x)}{d}-\frac {b^2 (A-2 C) \sin (c+d x)}{d}\right )+\frac {A \tan (c+d x) \sec (c+d x) (a+b \cos (c+d x))^2}{2 d}\)

\(\Big \downarrow \) 3214

\(\displaystyle \frac {1}{2} \left (\left (a^2 (A+2 C)+4 a b B+2 A b^2\right ) \int \sec (c+d x)dx+\frac {2 a (a B+A b) \tan (c+d x)}{d}+2 b x (2 a C+b B)-\frac {b^2 (A-2 C) \sin (c+d x)}{d}\right )+\frac {A \tan (c+d x) \sec (c+d x) (a+b \cos (c+d x))^2}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\left (a^2 (A+2 C)+4 a b B+2 A b^2\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {2 a (a B+A b) \tan (c+d x)}{d}+2 b x (2 a C+b B)-\frac {b^2 (A-2 C) \sin (c+d x)}{d}\right )+\frac {A \tan (c+d x) \sec (c+d x) (a+b \cos (c+d x))^2}{2 d}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {1}{2} \left (\frac {\left (a^2 (A+2 C)+4 a b B+2 A b^2\right ) \text {arctanh}(\sin (c+d x))}{d}+\frac {2 a (a B+A b) \tan (c+d x)}{d}+2 b x (2 a C+b B)-\frac {b^2 (A-2 C) \sin (c+d x)}{d}\right )+\frac {A \tan (c+d x) \sec (c+d x) (a+b \cos (c+d x))^2}{2 d}\)

Input:

Int[(a + b*Cos[c + d*x])^2*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + 
 d*x]^3,x]
 

Output:

(A*(a + b*Cos[c + d*x])^2*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (2*b*(b*B + 2 
*a*C)*x + ((2*A*b^2 + 4*a*b*B + a^2*(A + 2*C))*ArcTanh[Sin[c + d*x]])/d - 
(b^2*(A - 2*C)*Sin[c + d*x])/d + (2*a*(A*b + a*B)*Tan[c + d*x])/d)/2
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3214
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[b*(x/d), x] - Simp[(b*c - a*d)/d   Int[1/(c + d 
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 

rule 3510
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f 
_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(A*b^2 - a*b*B + a^2*C)*Cos[ 
e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] - S 
imp[1/(b^2*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*( 
m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d + b^2*d*(m 
 + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1)) 
))*Sin[e + f*x] - b*C*d*(m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; F 
reeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 
 0] && LtQ[m, -1]
 

rule 3526
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - 
d^2))), x] + Simp[1/(d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin[e + f*x])^(m - 
 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + (c*C - B* 
d)*(b*c*m + a*d*(n + 1)) - (d*(A*(a*d*(n + 2) - b*c*(n + 1)) + B*(b*d*(n + 
1) - a*c*(n + 2))) - C*(b*c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x 
] + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f 
*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d 
, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 0.77 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.10

method result size
parts \(\frac {A \,a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}+\frac {\left (2 a A b +B \,a^{2}\right ) \tan \left (d x +c \right )}{d}+\frac {\left (B \,b^{2}+2 a b C \right ) \left (d x +c \right )}{d}+\frac {\left (A \,b^{2}+2 B a b +a^{2} C \right ) \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}+\frac {b^{2} C \sin \left (d x +c \right )}{d}\) \(130\)
derivativedivides \(\frac {A \,a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+B \,a^{2} \tan \left (d x +c \right )+a^{2} C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+2 a A b \tan \left (d x +c \right )+2 B a b \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+2 a b C \left (d x +c \right )+A \,b^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+B \,b^{2} \left (d x +c \right )+C \sin \left (d x +c \right ) b^{2}}{d}\) \(152\)
default \(\frac {A \,a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+B \,a^{2} \tan \left (d x +c \right )+a^{2} C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+2 a A b \tan \left (d x +c \right )+2 B a b \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+2 a b C \left (d x +c \right )+A \,b^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+B \,b^{2} \left (d x +c \right )+C \sin \left (d x +c \right ) b^{2}}{d}\) \(152\)
parallelrisch \(\frac {-\left (1+\cos \left (2 d x +2 c \right )\right ) \left (2 A \,b^{2}+4 B a b +a^{2} \left (A +2 C \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+\left (1+\cos \left (2 d x +2 c \right )\right ) \left (2 A \,b^{2}+4 B a b +a^{2} \left (A +2 C \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+2 b d x \left (B b +2 C a \right ) \cos \left (2 d x +2 c \right )+\left (4 a A b +2 B \,a^{2}\right ) \sin \left (2 d x +2 c \right )+C \sin \left (3 d x +3 c \right ) b^{2}+\left (2 A \,a^{2}+C \,b^{2}\right ) \sin \left (d x +c \right )+2 b d x \left (B b +2 C a \right )}{2 d \left (1+\cos \left (2 d x +2 c \right )\right )}\) \(201\)
risch \(x B \,b^{2}+2 a b C x -\frac {i {\mathrm e}^{i \left (d x +c \right )} C \,b^{2}}{2 d}+\frac {i {\mathrm e}^{-i \left (d x +c \right )} C \,b^{2}}{2 d}-\frac {i a \left (A a \,{\mathrm e}^{3 i \left (d x +c \right )}-4 A b \,{\mathrm e}^{2 i \left (d x +c \right )}-2 B a \,{\mathrm e}^{2 i \left (d x +c \right )}-a A \,{\mathrm e}^{i \left (d x +c \right )}-4 A b -2 B a \right )}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}+\frac {A \,a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) A \,b^{2}}{d}+\frac {2 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B a b}{d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) a^{2} C}{d}-\frac {A \,a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) A \,b^{2}}{d}-\frac {2 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B a b}{d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) a^{2} C}{d}\) \(304\)
norman \(\frac {\left (B \,b^{2}+2 a b C \right ) x +\left (-4 B \,b^{2}-8 a b C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+\left (-B \,b^{2}-2 a b C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (-B \,b^{2}-2 a b C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+\left (B \,b^{2}+2 a b C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{12}+\left (2 B \,b^{2}+4 a b C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\left (2 B \,b^{2}+4 a b C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}+\frac {\left (A \,a^{2}-4 a A b -2 B \,a^{2}+2 C \,b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{d}+\frac {\left (A \,a^{2}+4 a A b +2 B \,a^{2}+2 C \,b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {\left (5 A \,a^{2}-12 a A b -6 B \,a^{2}+2 C \,b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{d}+\frac {\left (5 A \,a^{2}+12 a A b +6 B \,a^{2}+2 C \,b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{d}+\frac {2 \left (5 A \,a^{2}-4 a A b -2 B \,a^{2}-2 C \,b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{d}+\frac {2 \left (5 A \,a^{2}+4 a A b +2 B \,a^{2}-2 C \,b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{d}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{4} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{2}}-\frac {\left (A \,a^{2}+2 A \,b^{2}+4 B a b +2 a^{2} C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {\left (A \,a^{2}+2 A \,b^{2}+4 B a b +2 a^{2} C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(508\)

Input:

int((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x,meth 
od=_RETURNVERBOSE)
 

Output:

A*a^2/d*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c)))+(2*A*a*b 
+B*a^2)/d*tan(d*x+c)+(B*b^2+2*C*a*b)/d*(d*x+c)+(A*b^2+2*B*a*b+C*a^2)/d*ln( 
sec(d*x+c)+tan(d*x+c))+b^2*C*sin(d*x+c)/d
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.40 \[ \int (a+b \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {4 \, {\left (2 \, C a b + B b^{2}\right )} d x \cos \left (d x + c\right )^{2} + {\left ({\left (A + 2 \, C\right )} a^{2} + 4 \, B a b + 2 \, A b^{2}\right )} \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left ({\left (A + 2 \, C\right )} a^{2} + 4 \, B a b + 2 \, A b^{2}\right )} \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (2 \, C b^{2} \cos \left (d x + c\right )^{2} + A a^{2} + 2 \, {\left (B a^{2} + 2 \, A a b\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{2}} \] Input:

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3, 
x, algorithm="fricas")
 

Output:

1/4*(4*(2*C*a*b + B*b^2)*d*x*cos(d*x + c)^2 + ((A + 2*C)*a^2 + 4*B*a*b + 2 
*A*b^2)*cos(d*x + c)^2*log(sin(d*x + c) + 1) - ((A + 2*C)*a^2 + 4*B*a*b + 
2*A*b^2)*cos(d*x + c)^2*log(-sin(d*x + c) + 1) + 2*(2*C*b^2*cos(d*x + c)^2 
 + A*a^2 + 2*(B*a^2 + 2*A*a*b)*cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) 
^2)
 

Sympy [F]

\[ \int (a+b \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\int \left (a + b \cos {\left (c + d x \right )}\right )^{2} \left (A + B \cos {\left (c + d x \right )} + C \cos ^{2}{\left (c + d x \right )}\right ) \sec ^{3}{\left (c + d x \right )}\, dx \] Input:

integrate((a+b*cos(d*x+c))**2*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)* 
*3,x)
 

Output:

Integral((a + b*cos(c + d*x))**2*(A + B*cos(c + d*x) + C*cos(c + d*x)**2)* 
sec(c + d*x)**3, x)
 

Maxima [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.60 \[ \int (a+b \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {8 \, {\left (d x + c\right )} C a b + 4 \, {\left (d x + c\right )} B b^{2} - A a^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 2 \, C a^{2} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 4 \, B a b {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 2 \, A b^{2} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 4 \, C b^{2} \sin \left (d x + c\right ) + 4 \, B a^{2} \tan \left (d x + c\right ) + 8 \, A a b \tan \left (d x + c\right )}{4 \, d} \] Input:

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3, 
x, algorithm="maxima")
 

Output:

1/4*(8*(d*x + c)*C*a*b + 4*(d*x + c)*B*b^2 - A*a^2*(2*sin(d*x + c)/(sin(d* 
x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) + 2*C*a^2*( 
log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) + 4*B*a*b*(log(sin(d*x + c) 
 + 1) - log(sin(d*x + c) - 1)) + 2*A*b^2*(log(sin(d*x + c) + 1) - log(sin( 
d*x + c) - 1)) + 4*C*b^2*sin(d*x + c) + 4*B*a^2*tan(d*x + c) + 8*A*a*b*tan 
(d*x + c))/d
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 239 vs. \(2 (112) = 224\).

Time = 0.16 (sec) , antiderivative size = 239, normalized size of antiderivative = 2.03 \[ \int (a+b \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {\frac {4 \, C b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1} + 2 \, {\left (2 \, C a b + B b^{2}\right )} {\left (d x + c\right )} + {\left (A a^{2} + 2 \, C a^{2} + 4 \, B a b + 2 \, A b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - {\left (A a^{2} + 2 \, C a^{2} + 4 \, B a b + 2 \, A b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + \frac {2 \, {\left (A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 4 \, A a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 4 \, A a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}}}{2 \, d} \] Input:

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3, 
x, algorithm="giac")
 

Output:

1/2*(4*C*b^2*tan(1/2*d*x + 1/2*c)/(tan(1/2*d*x + 1/2*c)^2 + 1) + 2*(2*C*a* 
b + B*b^2)*(d*x + c) + (A*a^2 + 2*C*a^2 + 4*B*a*b + 2*A*b^2)*log(abs(tan(1 
/2*d*x + 1/2*c) + 1)) - (A*a^2 + 2*C*a^2 + 4*B*a*b + 2*A*b^2)*log(abs(tan( 
1/2*d*x + 1/2*c) - 1)) + 2*(A*a^2*tan(1/2*d*x + 1/2*c)^3 - 2*B*a^2*tan(1/2 
*d*x + 1/2*c)^3 - 4*A*a*b*tan(1/2*d*x + 1/2*c)^3 + A*a^2*tan(1/2*d*x + 1/2 
*c) + 2*B*a^2*tan(1/2*d*x + 1/2*c) + 4*A*a*b*tan(1/2*d*x + 1/2*c))/(tan(1/ 
2*d*x + 1/2*c)^2 - 1)^2)/d
 

Mupad [B] (verification not implemented)

Time = 1.54 (sec) , antiderivative size = 257, normalized size of antiderivative = 2.18 \[ \int (a+b \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {2\,\left (\frac {A\,a^2\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{2}+A\,b^2\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )+B\,b^2\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )+C\,a^2\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )+2\,B\,a\,b\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )+2\,C\,a\,b\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\right )}{d}+\frac {\frac {B\,a^2\,\sin \left (2\,c+2\,d\,x\right )}{2}+\frac {C\,b^2\,\sin \left (3\,c+3\,d\,x\right )}{4}+\frac {A\,a^2\,\sin \left (c+d\,x\right )}{2}+\frac {C\,b^2\,\sin \left (c+d\,x\right )}{4}+A\,a\,b\,\sin \left (2\,c+2\,d\,x\right )}{d\,\left (\frac {\cos \left (2\,c+2\,d\,x\right )}{2}+\frac {1}{2}\right )} \] Input:

int(((a + b*cos(c + d*x))^2*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c 
 + d*x)^3,x)
 

Output:

(2*((A*a^2*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/2 + A*b^2*atanh(s 
in(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)) + B*b^2*atan(sin(c/2 + (d*x)/2)/cos( 
c/2 + (d*x)/2)) + C*a^2*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)) + 2*B 
*a*b*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)) + 2*C*a*b*atan(sin(c/2 + 
 (d*x)/2)/cos(c/2 + (d*x)/2))))/d + ((B*a^2*sin(2*c + 2*d*x))/2 + (C*b^2*s 
in(3*c + 3*d*x))/4 + (A*a^2*sin(c + d*x))/2 + (C*b^2*sin(c + d*x))/4 + A*a 
*b*sin(2*c + 2*d*x))/(d*(cos(2*c + 2*d*x)/2 + 1/2))
 

Reduce [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 505, normalized size of antiderivative = 4.28 \[ \int (a+b \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx =\text {Too large to display} \] Input:

int((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x)
 

Output:

( - cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*a**3 - 2*cos(c 
+ d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*a**2*c - 6*cos(c + d*x)*l 
og(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*a*b**2 + cos(c + d*x)*log(tan((c 
+ d*x)/2) - 1)*a**3 + 2*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*a**2*c + 6* 
cos(c + d*x)*log(tan((c + d*x)/2) - 1)*a*b**2 + cos(c + d*x)*log(tan((c + 
d*x)/2) + 1)*sin(c + d*x)**2*a**3 + 2*cos(c + d*x)*log(tan((c + d*x)/2) + 
1)*sin(c + d*x)**2*a**2*c + 6*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*sin(c 
 + d*x)**2*a*b**2 - cos(c + d*x)*log(tan((c + d*x)/2) + 1)*a**3 - 2*cos(c 
+ d*x)*log(tan((c + d*x)/2) + 1)*a**2*c - 6*cos(c + d*x)*log(tan((c + d*x) 
/2) + 1)*a*b**2 + 2*cos(c + d*x)*sin(c + d*x)**3*b**2*c + 4*cos(c + d*x)*s 
in(c + d*x)**2*a*b*c*d*x + 2*cos(c + d*x)*sin(c + d*x)**2*b**3*d*x - cos(c 
 + d*x)*sin(c + d*x)*a**3 - 2*cos(c + d*x)*sin(c + d*x)*b**2*c - 4*cos(c + 
 d*x)*a*b*c*d*x - 2*cos(c + d*x)*b**3*d*x + 6*sin(c + d*x)**3*a**2*b - 6*s 
in(c + d*x)*a**2*b)/(2*cos(c + d*x)*d*(sin(c + d*x)**2 - 1))