\(\int \frac {1}{a+b \cos ^4(x)} \, dx\) [23]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 10, antiderivative size = 350 \[ \int \frac {1}{a+b \cos ^4(x)} \, dx=\frac {\left (\sqrt {a}+\sqrt {a+b}\right ) \arctan \left (\frac {\sqrt [4]{a} \sqrt {a+b-\sqrt {a} \sqrt {a+b}}-\sqrt {2} (a+b)^{3/4} \cot (x)}{\sqrt [4]{a} \sqrt {a+b+\sqrt {a} \sqrt {a+b}}}\right )}{2 \sqrt {2} a^{3/4} \sqrt [4]{a+b} \sqrt {a+b+\sqrt {a} \sqrt {a+b}}}-\frac {\left (\sqrt {a}+\sqrt {a+b}\right ) \arctan \left (\frac {\sqrt [4]{a} \sqrt {a+b-\sqrt {a} \sqrt {a+b}}+\sqrt {2} (a+b)^{3/4} \cot (x)}{\sqrt [4]{a} \sqrt {a+b+\sqrt {a} \sqrt {a+b}}}\right )}{2 \sqrt {2} a^{3/4} \sqrt [4]{a+b} \sqrt {a+b+\sqrt {a} \sqrt {a+b}}}-\frac {\sqrt {-\sqrt {a}+\sqrt {a+b}} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt {-\sqrt {a}+\sqrt {a+b}} \cot (x)}{\sqrt {a+b} \left (\frac {\sqrt {a}}{\sqrt {a+b}}+\cot ^2(x)\right )}\right )}{2 \sqrt {2} a^{3/4} \sqrt {a+b}} \] Output:

1/4*(a^(1/2)+(a+b)^(1/2))*arctan((a^(1/4)*(a+b-a^(1/2)*(a+b)^(1/2))^(1/2)- 
2^(1/2)*(a+b)^(3/4)*cot(x))/a^(1/4)/(a+b+a^(1/2)*(a+b)^(1/2))^(1/2))*2^(1/ 
2)/a^(3/4)/(a+b)^(1/4)/(a+b+a^(1/2)*(a+b)^(1/2))^(1/2)-1/4*(a^(1/2)+(a+b)^ 
(1/2))*arctan((a^(1/4)*(a+b-a^(1/2)*(a+b)^(1/2))^(1/2)+2^(1/2)*(a+b)^(3/4) 
*cot(x))/a^(1/4)/(a+b+a^(1/2)*(a+b)^(1/2))^(1/2))*2^(1/2)/a^(3/4)/(a+b)^(1 
/4)/(a+b+a^(1/2)*(a+b)^(1/2))^(1/2)-1/4*(-a^(1/2)+(a+b)^(1/2))^(1/2)*arcta 
nh(2^(1/2)*a^(1/4)*(-a^(1/2)+(a+b)^(1/2))^(1/2)*cot(x)/(a+b)^(1/2)/(a^(1/2 
)/(a+b)^(1/2)+cot(x)^2))*2^(1/2)/a^(3/4)/(a+b)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.91 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.35 \[ \int \frac {1}{a+b \cos ^4(x)} \, dx=\frac {\arctan \left (\frac {\sqrt {a} \tan (x)}{\sqrt {a+i \sqrt {a} \sqrt {b}}}\right )}{2 \sqrt {a} \sqrt {a+i \sqrt {a} \sqrt {b}}}-\frac {\text {arctanh}\left (\frac {\sqrt {a} \tan (x)}{\sqrt {-a+i \sqrt {a} \sqrt {b}}}\right )}{2 \sqrt {a} \sqrt {-a+i \sqrt {a} \sqrt {b}}} \] Input:

Integrate[(a + b*Cos[x]^4)^(-1),x]
 

Output:

ArcTan[(Sqrt[a]*Tan[x])/Sqrt[a + I*Sqrt[a]*Sqrt[b]]]/(2*Sqrt[a]*Sqrt[a + I 
*Sqrt[a]*Sqrt[b]]) - ArcTanh[(Sqrt[a]*Tan[x])/Sqrt[-a + I*Sqrt[a]*Sqrt[b]] 
]/(2*Sqrt[a]*Sqrt[-a + I*Sqrt[a]*Sqrt[b]])
 

Rubi [A] (verified)

Time = 1.34 (sec) , antiderivative size = 541, normalized size of antiderivative = 1.55, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.900, Rules used = {3042, 3688, 1483, 1142, 25, 27, 1083, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{a+b \cos ^4(x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{a+b \sin \left (x+\frac {\pi }{2}\right )^4}dx\)

\(\Big \downarrow \) 3688

\(\displaystyle -\int \frac {\cot ^2(x)+1}{(a+b) \cot ^4(x)+2 a \cot ^2(x)+a}d\cot (x)\)

\(\Big \downarrow \) 1483

\(\displaystyle -\frac {\sqrt [4]{a+b} \int \frac {\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b}}{(a+b)^{3/4}}-\left (1-\frac {\sqrt {a}}{\sqrt {a+b}}\right ) \cot (x)}{\cot ^2(x)-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b} \cot (x)}{(a+b)^{3/4}}+\frac {\sqrt {a}}{\sqrt {a+b}}}d\cot (x)}{2 \sqrt {2} a^{3/4} \sqrt {-\sqrt {a} \sqrt {a+b}+a+b}}-\frac {\sqrt [4]{a+b} \int \frac {\left (1-\frac {\sqrt {a}}{\sqrt {a+b}}\right ) \cot (x)+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b}}{(a+b)^{3/4}}}{\cot ^2(x)+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b} \cot (x)}{(a+b)^{3/4}}+\frac {\sqrt {a}}{\sqrt {a+b}}}d\cot (x)}{2 \sqrt {2} a^{3/4} \sqrt {-\sqrt {a} \sqrt {a+b}+a+b}}\)

\(\Big \downarrow \) 1142

\(\displaystyle -\frac {\sqrt [4]{a+b} \left (\frac {\sqrt [4]{a} \left (\sqrt {a+b}+\sqrt {a}\right ) \sqrt {-\sqrt {a} \sqrt {a+b}+a+b} \int \frac {1}{\cot ^2(x)-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b} \cot (x)}{(a+b)^{3/4}}+\frac {\sqrt {a}}{\sqrt {a+b}}}d\cot (x)}{\sqrt {2} (a+b)^{5/4}}-\frac {1}{2} \left (1-\frac {\sqrt {a}}{\sqrt {a+b}}\right ) \int -\frac {\sqrt {2} \left (\frac {\sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b}}{(a+b)^{3/4}}-\sqrt {2} \cot (x)\right )}{\cot ^2(x)-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b} \cot (x)}{(a+b)^{3/4}}+\frac {\sqrt {a}}{\sqrt {a+b}}}d\cot (x)\right )}{2 \sqrt {2} a^{3/4} \sqrt {-\sqrt {a} \sqrt {a+b}+a+b}}-\frac {\sqrt [4]{a+b} \left (\frac {\sqrt [4]{a} \left (\sqrt {a+b}+\sqrt {a}\right ) \sqrt {-\sqrt {a} \sqrt {a+b}+a+b} \int \frac {1}{\cot ^2(x)+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b} \cot (x)}{(a+b)^{3/4}}+\frac {\sqrt {a}}{\sqrt {a+b}}}d\cot (x)}{\sqrt {2} (a+b)^{5/4}}+\frac {1}{2} \left (1-\frac {\sqrt {a}}{\sqrt {a+b}}\right ) \int \frac {\sqrt {2} \left (\sqrt {2} \cot (x)+\frac {\sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b}}{(a+b)^{3/4}}\right )}{\cot ^2(x)+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b} \cot (x)}{(a+b)^{3/4}}+\frac {\sqrt {a}}{\sqrt {a+b}}}d\cot (x)\right )}{2 \sqrt {2} a^{3/4} \sqrt {-\sqrt {a} \sqrt {a+b}+a+b}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt [4]{a+b} \left (\frac {\sqrt [4]{a} \left (\sqrt {a+b}+\sqrt {a}\right ) \sqrt {-\sqrt {a} \sqrt {a+b}+a+b} \int \frac {1}{\cot ^2(x)-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b} \cot (x)}{(a+b)^{3/4}}+\frac {\sqrt {a}}{\sqrt {a+b}}}d\cot (x)}{\sqrt {2} (a+b)^{5/4}}+\frac {1}{2} \left (1-\frac {\sqrt {a}}{\sqrt {a+b}}\right ) \int \frac {\sqrt {2} \left (\frac {\sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b}}{(a+b)^{3/4}}-\sqrt {2} \cot (x)\right )}{\cot ^2(x)-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b} \cot (x)}{(a+b)^{3/4}}+\frac {\sqrt {a}}{\sqrt {a+b}}}d\cot (x)\right )}{2 \sqrt {2} a^{3/4} \sqrt {-\sqrt {a} \sqrt {a+b}+a+b}}-\frac {\sqrt [4]{a+b} \left (\frac {\sqrt [4]{a} \left (\sqrt {a+b}+\sqrt {a}\right ) \sqrt {-\sqrt {a} \sqrt {a+b}+a+b} \int \frac {1}{\cot ^2(x)+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b} \cot (x)}{(a+b)^{3/4}}+\frac {\sqrt {a}}{\sqrt {a+b}}}d\cot (x)}{\sqrt {2} (a+b)^{5/4}}+\frac {1}{2} \left (1-\frac {\sqrt {a}}{\sqrt {a+b}}\right ) \int \frac {\sqrt {2} \left (\sqrt {2} \cot (x)+\frac {\sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b}}{(a+b)^{3/4}}\right )}{\cot ^2(x)+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b} \cot (x)}{(a+b)^{3/4}}+\frac {\sqrt {a}}{\sqrt {a+b}}}d\cot (x)\right )}{2 \sqrt {2} a^{3/4} \sqrt {-\sqrt {a} \sqrt {a+b}+a+b}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\sqrt [4]{a+b} \left (\frac {\sqrt [4]{a} \left (\sqrt {a+b}+\sqrt {a}\right ) \sqrt {-\sqrt {a} \sqrt {a+b}+a+b} \int \frac {1}{\cot ^2(x)-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b} \cot (x)}{(a+b)^{3/4}}+\frac {\sqrt {a}}{\sqrt {a+b}}}d\cot (x)}{\sqrt {2} (a+b)^{5/4}}+\frac {\left (1-\frac {\sqrt {a}}{\sqrt {a+b}}\right ) \int \frac {\frac {\sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b}}{(a+b)^{3/4}}-\sqrt {2} \cot (x)}{\cot ^2(x)-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b} \cot (x)}{(a+b)^{3/4}}+\frac {\sqrt {a}}{\sqrt {a+b}}}d\cot (x)}{\sqrt {2}}\right )}{2 \sqrt {2} a^{3/4} \sqrt {-\sqrt {a} \sqrt {a+b}+a+b}}-\frac {\sqrt [4]{a+b} \left (\frac {\sqrt [4]{a} \left (\sqrt {a+b}+\sqrt {a}\right ) \sqrt {-\sqrt {a} \sqrt {a+b}+a+b} \int \frac {1}{\cot ^2(x)+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b} \cot (x)}{(a+b)^{3/4}}+\frac {\sqrt {a}}{\sqrt {a+b}}}d\cot (x)}{\sqrt {2} (a+b)^{5/4}}+\frac {\left (1-\frac {\sqrt {a}}{\sqrt {a+b}}\right ) \int \frac {\sqrt {2} \cot (x)+\frac {\sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b}}{(a+b)^{3/4}}}{\cot ^2(x)+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b} \cot (x)}{(a+b)^{3/4}}+\frac {\sqrt {a}}{\sqrt {a+b}}}d\cot (x)}{\sqrt {2}}\right )}{2 \sqrt {2} a^{3/4} \sqrt {-\sqrt {a} \sqrt {a+b}+a+b}}\)

\(\Big \downarrow \) 1083

\(\displaystyle -\frac {\sqrt [4]{a+b} \left (\frac {\left (1-\frac {\sqrt {a}}{\sqrt {a+b}}\right ) \int \frac {\frac {\sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b}}{(a+b)^{3/4}}-\sqrt {2} \cot (x)}{\cot ^2(x)-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b} \cot (x)}{(a+b)^{3/4}}+\frac {\sqrt {a}}{\sqrt {a+b}}}d\cot (x)}{\sqrt {2}}-\frac {\sqrt {2} \sqrt [4]{a} \left (\sqrt {a+b}+\sqrt {a}\right ) \sqrt {-\sqrt {a} \sqrt {a+b}+a+b} \int \frac {1}{-\left (2 \cot (x)-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b}}{(a+b)^{3/4}}\right )^2-\frac {2 \sqrt {a} \left (a+\sqrt {a+b} \sqrt {a}+b\right )}{(a+b)^{3/2}}}d\left (2 \cot (x)-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b}}{(a+b)^{3/4}}\right )}{(a+b)^{5/4}}\right )}{2 \sqrt {2} a^{3/4} \sqrt {-\sqrt {a} \sqrt {a+b}+a+b}}-\frac {\sqrt [4]{a+b} \left (\frac {\left (1-\frac {\sqrt {a}}{\sqrt {a+b}}\right ) \int \frac {\sqrt {2} \cot (x)+\frac {\sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b}}{(a+b)^{3/4}}}{\cot ^2(x)+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b} \cot (x)}{(a+b)^{3/4}}+\frac {\sqrt {a}}{\sqrt {a+b}}}d\cot (x)}{\sqrt {2}}-\frac {\sqrt {2} \sqrt [4]{a} \left (\sqrt {a+b}+\sqrt {a}\right ) \sqrt {-\sqrt {a} \sqrt {a+b}+a+b} \int \frac {1}{-\left (2 \cot (x)+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b}}{(a+b)^{3/4}}\right )^2-\frac {2 \sqrt {a} \left (a+\sqrt {a+b} \sqrt {a}+b\right )}{(a+b)^{3/2}}}d\left (2 \cot (x)+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b}}{(a+b)^{3/4}}\right )}{(a+b)^{5/4}}\right )}{2 \sqrt {2} a^{3/4} \sqrt {-\sqrt {a} \sqrt {a+b}+a+b}}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {\sqrt [4]{a+b} \left (\frac {\left (1-\frac {\sqrt {a}}{\sqrt {a+b}}\right ) \int \frac {\frac {\sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b}}{(a+b)^{3/4}}-\sqrt {2} \cot (x)}{\cot ^2(x)-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b} \cot (x)}{(a+b)^{3/4}}+\frac {\sqrt {a}}{\sqrt {a+b}}}d\cot (x)}{\sqrt {2}}+\frac {\left (\sqrt {a+b}+\sqrt {a}\right ) \sqrt {-\sqrt {a} \sqrt {a+b}+a+b} \arctan \left (\frac {(a+b)^{3/4} \left (2 \cot (x)-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {-\sqrt {a} \sqrt {a+b}+a+b}}{(a+b)^{3/4}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt {\sqrt {a} \sqrt {a+b}+a+b}}\right )}{\sqrt {a+b} \sqrt {\sqrt {a} \sqrt {a+b}+a+b}}\right )}{2 \sqrt {2} a^{3/4} \sqrt {-\sqrt {a} \sqrt {a+b}+a+b}}-\frac {\sqrt [4]{a+b} \left (\frac {\left (1-\frac {\sqrt {a}}{\sqrt {a+b}}\right ) \int \frac {\sqrt {2} \cot (x)+\frac {\sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b}}{(a+b)^{3/4}}}{\cot ^2(x)+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {a-\sqrt {a+b} \sqrt {a}+b} \cot (x)}{(a+b)^{3/4}}+\frac {\sqrt {a}}{\sqrt {a+b}}}d\cot (x)}{\sqrt {2}}+\frac {\left (\sqrt {a+b}+\sqrt {a}\right ) \sqrt {-\sqrt {a} \sqrt {a+b}+a+b} \arctan \left (\frac {(a+b)^{3/4} \left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt {-\sqrt {a} \sqrt {a+b}+a+b}}{(a+b)^{3/4}}+2 \cot (x)\right )}{\sqrt {2} \sqrt [4]{a} \sqrt {\sqrt {a} \sqrt {a+b}+a+b}}\right )}{\sqrt {a+b} \sqrt {\sqrt {a} \sqrt {a+b}+a+b}}\right )}{2 \sqrt {2} a^{3/4} \sqrt {-\sqrt {a} \sqrt {a+b}+a+b}}\)

\(\Big \downarrow \) 1103

\(\displaystyle -\frac {\sqrt [4]{a+b} \left (\frac {\left (\sqrt {a+b}+\sqrt {a}\right ) \sqrt {-\sqrt {a} \sqrt {a+b}+a+b} \arctan \left (\frac {(a+b)^{3/4} \left (2 \cot (x)-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {-\sqrt {a} \sqrt {a+b}+a+b}}{(a+b)^{3/4}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt {\sqrt {a} \sqrt {a+b}+a+b}}\right )}{\sqrt {a+b} \sqrt {\sqrt {a} \sqrt {a+b}+a+b}}-\frac {1}{2} \left (1-\frac {\sqrt {a}}{\sqrt {a+b}}\right ) \log \left ((a+b)^{3/4} \cot ^2(x)-\sqrt {2} \sqrt [4]{a} \sqrt {-\sqrt {a} \sqrt {a+b}+a+b} \cot (x)+\sqrt {a} \sqrt [4]{a+b}\right )\right )}{2 \sqrt {2} a^{3/4} \sqrt {-\sqrt {a} \sqrt {a+b}+a+b}}-\frac {\sqrt [4]{a+b} \left (\frac {\left (\sqrt {a+b}+\sqrt {a}\right ) \sqrt {-\sqrt {a} \sqrt {a+b}+a+b} \arctan \left (\frac {(a+b)^{3/4} \left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt {-\sqrt {a} \sqrt {a+b}+a+b}}{(a+b)^{3/4}}+2 \cot (x)\right )}{\sqrt {2} \sqrt [4]{a} \sqrt {\sqrt {a} \sqrt {a+b}+a+b}}\right )}{\sqrt {a+b} \sqrt {\sqrt {a} \sqrt {a+b}+a+b}}+\frac {1}{2} \left (1-\frac {\sqrt {a}}{\sqrt {a+b}}\right ) \log \left ((a+b)^{3/4} \cot ^2(x)+\sqrt {2} \sqrt [4]{a} \sqrt {-\sqrt {a} \sqrt {a+b}+a+b} \cot (x)+\sqrt {a} \sqrt [4]{a+b}\right )\right )}{2 \sqrt {2} a^{3/4} \sqrt {-\sqrt {a} \sqrt {a+b}+a+b}}\)

Input:

Int[(a + b*Cos[x]^4)^(-1),x]
 

Output:

-1/2*((a + b)^(1/4)*(((Sqrt[a] + Sqrt[a + b])*Sqrt[a + b - Sqrt[a]*Sqrt[a 
+ b]]*ArcTan[((a + b)^(3/4)*(-((Sqrt[2]*a^(1/4)*Sqrt[a + b - Sqrt[a]*Sqrt[ 
a + b]])/(a + b)^(3/4)) + 2*Cot[x]))/(Sqrt[2]*a^(1/4)*Sqrt[a + b + Sqrt[a] 
*Sqrt[a + b]])])/(Sqrt[a + b]*Sqrt[a + b + Sqrt[a]*Sqrt[a + b]]) - ((1 - S 
qrt[a]/Sqrt[a + b])*Log[Sqrt[a]*(a + b)^(1/4) - Sqrt[2]*a^(1/4)*Sqrt[a + b 
 - Sqrt[a]*Sqrt[a + b]]*Cot[x] + (a + b)^(3/4)*Cot[x]^2])/2))/(Sqrt[2]*a^( 
3/4)*Sqrt[a + b - Sqrt[a]*Sqrt[a + b]]) - ((a + b)^(1/4)*(((Sqrt[a] + Sqrt 
[a + b])*Sqrt[a + b - Sqrt[a]*Sqrt[a + b]]*ArcTan[((a + b)^(3/4)*((Sqrt[2] 
*a^(1/4)*Sqrt[a + b - Sqrt[a]*Sqrt[a + b]])/(a + b)^(3/4) + 2*Cot[x]))/(Sq 
rt[2]*a^(1/4)*Sqrt[a + b + Sqrt[a]*Sqrt[a + b]])])/(Sqrt[a + b]*Sqrt[a + b 
 + Sqrt[a]*Sqrt[a + b]]) + ((1 - Sqrt[a]/Sqrt[a + b])*Log[Sqrt[a]*(a + b)^ 
(1/4) + Sqrt[2]*a^(1/4)*Sqrt[a + b - Sqrt[a]*Sqrt[a + b]]*Cot[x] + (a + b) 
^(3/4)*Cot[x]^2])/2))/(2*Sqrt[2]*a^(3/4)*Sqrt[a + b - Sqrt[a]*Sqrt[a + b]] 
)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 1483
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/c, 2]}, Simp[1/(2*c*q*r)   In 
t[(d*r - (d - e*q)*x)/(q - r*x + x^2), x], x] + Simp[1/(2*c*q*r)   Int[(d*r 
 + (d - e*q)*x)/(q + r*x + x^2), x], x]]] /; FreeQ[{a, b, c, d, e}, x] && N 
eQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NegQ[b^2 - 4*a*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3688
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^(p_.), x_Symbol] :> With[{ff = 
 FreeFactors[Tan[e + f*x], x]}, Simp[ff/f   Subst[Int[(a + 2*a*ff^2*x^2 + ( 
a + b)*ff^4*x^4)^p/(1 + ff^2*x^2)^(2*p + 1), x], x, Tan[e + f*x]/ff], x]] / 
; FreeQ[{a, b, e, f}, x] && IntegerQ[p]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.40 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.29

method result size
risch \(\munderset {\textit {\_R} =\operatorname {RootOf}\left (1+\left (256 a^{4}+256 a^{3} b \right ) \textit {\_Z}^{4}+32 a^{2} \textit {\_Z}^{2}\right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{2 i x}+\left (\frac {128 i a^{4}}{b}+128 i a^{3}\right ) \textit {\_R}^{3}+\left (-\frac {32 a^{3}}{b}-32 a^{2}\right ) \textit {\_R}^{2}+\left (\frac {8 i a^{2}}{b}-8 i a \right ) \textit {\_R} -\frac {2 a}{b}+1\right )\) \(101\)
default \(\text {Expression too large to display}\) \(1233\)

Input:

int(1/(a+b*cos(x)^4),x,method=_RETURNVERBOSE)
 

Output:

sum(_R*ln(exp(2*I*x)+(128*I/b*a^4+128*I*a^3)*_R^3+(-32/b*a^3-32*a^2)*_R^2+ 
(8*I/b*a^2-8*I*a)*_R-2/b*a+1),_R=RootOf(1+(256*a^4+256*a^3*b)*_Z^4+32*a^2* 
_Z^2))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 809 vs. \(2 (245) = 490\).

Time = 0.19 (sec) , antiderivative size = 809, normalized size of antiderivative = 2.31 \[ \int \frac {1}{a+b \cos ^4(x)} \, dx =\text {Too large to display} \] Input:

integrate(1/(a+b*cos(x)^4),x, algorithm="fricas")
 

Output:

-1/8*sqrt(-((a^2 + a*b)*sqrt(-b/(a^5 + 2*a^4*b + a^3*b^2)) + 1)/(a^2 + a*b 
))*log(b*cos(x)^2 + 2*(a*b*cos(x)*sin(x) + (a^4 + a^3*b)*sqrt(-b/(a^5 + 2* 
a^4*b + a^3*b^2))*cos(x)*sin(x))*sqrt(-((a^2 + a*b)*sqrt(-b/(a^5 + 2*a^4*b 
 + a^3*b^2)) + 1)/(a^2 + a*b)) - (a^3 + a^2*b - 2*(a^3 + a^2*b)*cos(x)^2)* 
sqrt(-b/(a^5 + 2*a^4*b + a^3*b^2))) + 1/8*sqrt(-((a^2 + a*b)*sqrt(-b/(a^5 
+ 2*a^4*b + a^3*b^2)) + 1)/(a^2 + a*b))*log(b*cos(x)^2 - 2*(a*b*cos(x)*sin 
(x) + (a^4 + a^3*b)*sqrt(-b/(a^5 + 2*a^4*b + a^3*b^2))*cos(x)*sin(x))*sqrt 
(-((a^2 + a*b)*sqrt(-b/(a^5 + 2*a^4*b + a^3*b^2)) + 1)/(a^2 + a*b)) - (a^3 
 + a^2*b - 2*(a^3 + a^2*b)*cos(x)^2)*sqrt(-b/(a^5 + 2*a^4*b + a^3*b^2))) + 
 1/8*sqrt(((a^2 + a*b)*sqrt(-b/(a^5 + 2*a^4*b + a^3*b^2)) - 1)/(a^2 + a*b) 
)*log(-b*cos(x)^2 + 2*(a*b*cos(x)*sin(x) - (a^4 + a^3*b)*sqrt(-b/(a^5 + 2* 
a^4*b + a^3*b^2))*cos(x)*sin(x))*sqrt(((a^2 + a*b)*sqrt(-b/(a^5 + 2*a^4*b 
+ a^3*b^2)) - 1)/(a^2 + a*b)) - (a^3 + a^2*b - 2*(a^3 + a^2*b)*cos(x)^2)*s 
qrt(-b/(a^5 + 2*a^4*b + a^3*b^2))) - 1/8*sqrt(((a^2 + a*b)*sqrt(-b/(a^5 + 
2*a^4*b + a^3*b^2)) - 1)/(a^2 + a*b))*log(-b*cos(x)^2 - 2*(a*b*cos(x)*sin( 
x) - (a^4 + a^3*b)*sqrt(-b/(a^5 + 2*a^4*b + a^3*b^2))*cos(x)*sin(x))*sqrt( 
((a^2 + a*b)*sqrt(-b/(a^5 + 2*a^4*b + a^3*b^2)) - 1)/(a^2 + a*b)) - (a^3 + 
 a^2*b - 2*(a^3 + a^2*b)*cos(x)^2)*sqrt(-b/(a^5 + 2*a^4*b + a^3*b^2)))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{a+b \cos ^4(x)} \, dx=\text {Timed out} \] Input:

integrate(1/(a+b*cos(x)**4),x)
 

Output:

Timed out
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int \frac {1}{a+b \cos ^4(x)} \, dx=\int { \frac {1}{b \cos \left (x\right )^{4} + a} \,d x } \] Input:

integrate(1/(a+b*cos(x)^4),x, algorithm="maxima")
 

Output:

integrate(1/(b*cos(x)^4 + a), x)
 

Giac [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 307, normalized size of antiderivative = 0.88 \[ \int \frac {1}{a+b \cos ^4(x)} \, dx=\frac {{\left (3 \, \sqrt {a^{2} + \sqrt {-a b} a} a^{2} + 4 \, \sqrt {a^{2} + \sqrt {-a b} a} a b - 3 \, \sqrt {a^{2} + \sqrt {-a b} a} \sqrt {-a b} a - 4 \, \sqrt {a^{2} + \sqrt {-a b} a} \sqrt {-a b} b\right )} {\left (\pi \left \lfloor \frac {x}{\pi } + \frac {1}{2} \right \rfloor + \arctan \left (\frac {2 \, \tan \left (x\right )}{\sqrt {\frac {4 \, a + \sqrt {-16 \, {\left (a + b\right )} a + 16 \, a^{2}}}{a}}}\right )\right )} {\left | a \right |}}{2 \, {\left (3 \, a^{5} + 7 \, a^{4} b + 4 \, a^{3} b^{2}\right )}} + \frac {{\left (3 \, \sqrt {a^{2} - \sqrt {-a b} a} a^{2} + 4 \, \sqrt {a^{2} - \sqrt {-a b} a} a b - 3 \, \sqrt {a^{2} - \sqrt {-a b} a} \sqrt {-a b} a - 4 \, \sqrt {a^{2} - \sqrt {-a b} a} \sqrt {-a b} b\right )} {\left (\pi \left \lfloor \frac {x}{\pi } + \frac {1}{2} \right \rfloor + \arctan \left (\frac {2 \, \tan \left (x\right )}{\sqrt {\frac {4 \, a - \sqrt {-16 \, {\left (a + b\right )} a + 16 \, a^{2}}}{a}}}\right )\right )} {\left | a \right |}}{2 \, {\left (3 \, a^{5} + 7 \, a^{4} b + 4 \, a^{3} b^{2}\right )}} \] Input:

integrate(1/(a+b*cos(x)^4),x, algorithm="giac")
 

Output:

1/2*(3*sqrt(a^2 + sqrt(-a*b)*a)*a^2 + 4*sqrt(a^2 + sqrt(-a*b)*a)*a*b - 3*s 
qrt(a^2 + sqrt(-a*b)*a)*sqrt(-a*b)*a - 4*sqrt(a^2 + sqrt(-a*b)*a)*sqrt(-a* 
b)*b)*(pi*floor(x/pi + 1/2) + arctan(2*tan(x)/sqrt((4*a + sqrt(-16*(a + b) 
*a + 16*a^2))/a)))*abs(a)/(3*a^5 + 7*a^4*b + 4*a^3*b^2) + 1/2*(3*sqrt(a^2 
- sqrt(-a*b)*a)*a^2 + 4*sqrt(a^2 - sqrt(-a*b)*a)*a*b - 3*sqrt(a^2 - sqrt(- 
a*b)*a)*sqrt(-a*b)*a - 4*sqrt(a^2 - sqrt(-a*b)*a)*sqrt(-a*b)*b)*(pi*floor( 
x/pi + 1/2) + arctan(2*tan(x)/sqrt((4*a - sqrt(-16*(a + b)*a + 16*a^2))/a) 
))*abs(a)/(3*a^5 + 7*a^4*b + 4*a^3*b^2)
 

Mupad [B] (verification not implemented)

Time = 1.28 (sec) , antiderivative size = 926, normalized size of antiderivative = 2.65 \[ \int \frac {1}{a+b \cos ^4(x)} \, dx=-2\,\mathrm {atanh}\left (\frac {8\,a^6\,b\,\mathrm {tan}\left (x\right )\,\sqrt {-\frac {a^2}{16\,\left (a^4+b\,a^3\right )}-\frac {\sqrt {-a^3\,b}}{16\,\left (a^4+b\,a^3\right )}}}{\frac {2\,a^9\,b}{a^4+b\,a^3}-2\,a^4\,b^2-2\,a^5\,b+\frac {2\,a^8\,b^2}{a^4+b\,a^3}+\frac {2\,a^7\,b\,\sqrt {-a^3\,b}}{a^4+b\,a^3}+\frac {2\,a^6\,b^2\,\sqrt {-a^3\,b}}{a^4+b\,a^3}}-\frac {8\,a^2\,b\,\mathrm {tan}\left (x\right )\,\sqrt {-\frac {a^2}{16\,\left (a^4+b\,a^3\right )}-\frac {\sqrt {-a^3\,b}}{16\,\left (a^4+b\,a^3\right )}}}{\frac {2\,a^5\,b}{a^4+b\,a^3}-2\,a\,b+\frac {2\,a^3\,b\,\sqrt {-a^3\,b}}{a^4+b\,a^3}}+\frac {8\,a^4\,b\,\mathrm {tan}\left (x\right )\,\sqrt {-a^3\,b}\,\sqrt {-\frac {a^2}{16\,\left (a^4+b\,a^3\right )}-\frac {\sqrt {-a^3\,b}}{16\,\left (a^4+b\,a^3\right )}}}{\frac {2\,a^9\,b}{a^4+b\,a^3}-2\,a^4\,b^2-2\,a^5\,b+\frac {2\,a^8\,b^2}{a^4+b\,a^3}+\frac {2\,a^7\,b\,\sqrt {-a^3\,b}}{a^4+b\,a^3}+\frac {2\,a^6\,b^2\,\sqrt {-a^3\,b}}{a^4+b\,a^3}}\right )\,\sqrt {-\frac {a^2+\sqrt {-a^3\,b}}{16\,\left (a^4+b\,a^3\right )}}-2\,\mathrm {atanh}\left (\frac {8\,a^2\,b\,\mathrm {tan}\left (x\right )\,\sqrt {\frac {\sqrt {-a^3\,b}}{16\,\left (a^4+b\,a^3\right )}-\frac {a^2}{16\,\left (a^4+b\,a^3\right )}}}{2\,a\,b-\frac {2\,a^5\,b}{a^4+b\,a^3}+\frac {2\,a^3\,b\,\sqrt {-a^3\,b}}{a^4+b\,a^3}}-\frac {8\,a^6\,b\,\mathrm {tan}\left (x\right )\,\sqrt {\frac {\sqrt {-a^3\,b}}{16\,\left (a^4+b\,a^3\right )}-\frac {a^2}{16\,\left (a^4+b\,a^3\right )}}}{2\,a^5\,b+2\,a^4\,b^2-\frac {2\,a^9\,b}{a^4+b\,a^3}-\frac {2\,a^8\,b^2}{a^4+b\,a^3}+\frac {2\,a^7\,b\,\sqrt {-a^3\,b}}{a^4+b\,a^3}+\frac {2\,a^6\,b^2\,\sqrt {-a^3\,b}}{a^4+b\,a^3}}+\frac {8\,a^4\,b\,\mathrm {tan}\left (x\right )\,\sqrt {-a^3\,b}\,\sqrt {\frac {\sqrt {-a^3\,b}}{16\,\left (a^4+b\,a^3\right )}-\frac {a^2}{16\,\left (a^4+b\,a^3\right )}}}{2\,a^5\,b+2\,a^4\,b^2-\frac {2\,a^9\,b}{a^4+b\,a^3}-\frac {2\,a^8\,b^2}{a^4+b\,a^3}+\frac {2\,a^7\,b\,\sqrt {-a^3\,b}}{a^4+b\,a^3}+\frac {2\,a^6\,b^2\,\sqrt {-a^3\,b}}{a^4+b\,a^3}}\right )\,\sqrt {-\frac {a^2-\sqrt {-a^3\,b}}{16\,\left (a^4+b\,a^3\right )}} \] Input:

int(1/(a + b*cos(x)^4),x)
 

Output:

- 2*atanh((8*a^6*b*tan(x)*(- a^2/(16*(a^3*b + a^4)) - (-a^3*b)^(1/2)/(16*( 
a^3*b + a^4)))^(1/2))/((2*a^9*b)/(a^3*b + a^4) - 2*a^4*b^2 - 2*a^5*b + (2* 
a^8*b^2)/(a^3*b + a^4) + (2*a^7*b*(-a^3*b)^(1/2))/(a^3*b + a^4) + (2*a^6*b 
^2*(-a^3*b)^(1/2))/(a^3*b + a^4)) - (8*a^2*b*tan(x)*(- a^2/(16*(a^3*b + a^ 
4)) - (-a^3*b)^(1/2)/(16*(a^3*b + a^4)))^(1/2))/((2*a^5*b)/(a^3*b + a^4) - 
 2*a*b + (2*a^3*b*(-a^3*b)^(1/2))/(a^3*b + a^4)) + (8*a^4*b*tan(x)*(-a^3*b 
)^(1/2)*(- a^2/(16*(a^3*b + a^4)) - (-a^3*b)^(1/2)/(16*(a^3*b + a^4)))^(1/ 
2))/((2*a^9*b)/(a^3*b + a^4) - 2*a^4*b^2 - 2*a^5*b + (2*a^8*b^2)/(a^3*b + 
a^4) + (2*a^7*b*(-a^3*b)^(1/2))/(a^3*b + a^4) + (2*a^6*b^2*(-a^3*b)^(1/2)) 
/(a^3*b + a^4)))*(-(a^2 + (-a^3*b)^(1/2))/(16*(a^3*b + a^4)))^(1/2) - 2*at 
anh((8*a^2*b*tan(x)*((-a^3*b)^(1/2)/(16*(a^3*b + a^4)) - a^2/(16*(a^3*b + 
a^4)))^(1/2))/(2*a*b - (2*a^5*b)/(a^3*b + a^4) + (2*a^3*b*(-a^3*b)^(1/2))/ 
(a^3*b + a^4)) - (8*a^6*b*tan(x)*((-a^3*b)^(1/2)/(16*(a^3*b + a^4)) - a^2/ 
(16*(a^3*b + a^4)))^(1/2))/(2*a^5*b + 2*a^4*b^2 - (2*a^9*b)/(a^3*b + a^4) 
- (2*a^8*b^2)/(a^3*b + a^4) + (2*a^7*b*(-a^3*b)^(1/2))/(a^3*b + a^4) + (2* 
a^6*b^2*(-a^3*b)^(1/2))/(a^3*b + a^4)) + (8*a^4*b*tan(x)*(-a^3*b)^(1/2)*(( 
-a^3*b)^(1/2)/(16*(a^3*b + a^4)) - a^2/(16*(a^3*b + a^4)))^(1/2))/(2*a^5*b 
 + 2*a^4*b^2 - (2*a^9*b)/(a^3*b + a^4) - (2*a^8*b^2)/(a^3*b + a^4) + (2*a^ 
7*b*(-a^3*b)^(1/2))/(a^3*b + a^4) + (2*a^6*b^2*(-a^3*b)^(1/2))/(a^3*b + a^ 
4)))*(-(a^2 - (-a^3*b)^(1/2))/(16*(a^3*b + a^4)))^(1/2)
 

Reduce [F]

\[ \int \frac {1}{a+b \cos ^4(x)} \, dx=\int \frac {1}{\cos \left (x \right )^{4} b +a}d x \] Input:

int(1/(a+b*cos(x)^4),x)
 

Output:

int(1/(cos(x)**4*b + a),x)