\(\int \frac {\csc ^3(a+b x)}{(d \tan (a+b x))^{5/2}} \, dx\) [113]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 140 \[ \int \frac {\csc ^3(a+b x)}{(d \tan (a+b x))^{5/2}} \, dx=\frac {2 \csc (a+b x)}{15 b d (d \tan (a+b x))^{3/2}}-\frac {2 \csc ^3(a+b x)}{9 b d (d \tan (a+b x))^{3/2}}+\frac {4 \cos (a+b x)}{15 b d^2 \sqrt {d \tan (a+b x)}}+\frac {4 E\left (\left .a-\frac {\pi }{4}+b x\right |2\right ) \sin (a+b x)}{15 b d^2 \sqrt {\sin (2 a+2 b x)} \sqrt {d \tan (a+b x)}} \] Output:

2/15*csc(b*x+a)/b/d/(d*tan(b*x+a))^(3/2)-2/9*csc(b*x+a)^3/b/d/(d*tan(b*x+a 
))^(3/2)+4/15*cos(b*x+a)/b/d^2/(d*tan(b*x+a))^(1/2)-4/15*EllipticE(cos(a+1 
/4*Pi+b*x),2^(1/2))*sin(b*x+a)/b/d^2/sin(2*b*x+2*a)^(1/2)/(d*tan(b*x+a))^( 
1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.06 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.83 \[ \int \frac {\csc ^3(a+b x)}{(d \tan (a+b x))^{5/2}} \, dx=\frac {2 \left (4 \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {3}{2},\frac {7}{4},-\tan ^2(a+b x)\right ) \sec ^2(a+b x)+\left (-6+3 \csc ^2(a+b x)+8 \csc ^4(a+b x)-5 \csc ^6(a+b x)\right ) \sqrt {\sec ^2(a+b x)}\right ) \sin (a+b x) \sqrt {d \tan (a+b x)}}{45 b d^3 \sqrt {\sec ^2(a+b x)}} \] Input:

Integrate[Csc[a + b*x]^3/(d*Tan[a + b*x])^(5/2),x]
 

Output:

(2*(4*Hypergeometric2F1[3/4, 3/2, 7/4, -Tan[a + b*x]^2]*Sec[a + b*x]^2 + ( 
-6 + 3*Csc[a + b*x]^2 + 8*Csc[a + b*x]^4 - 5*Csc[a + b*x]^6)*Sqrt[Sec[a + 
b*x]^2])*Sin[a + b*x]*Sqrt[d*Tan[a + b*x]])/(45*b*d^3*Sqrt[Sec[a + b*x]^2] 
)
 

Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.26, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.571, Rules used = {3042, 3077, 3042, 3079, 3042, 3081, 3042, 3050, 3042, 3052, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\csc ^3(a+b x)}{(d \tan (a+b x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin (a+b x)^3 (d \tan (a+b x))^{5/2}}dx\)

\(\Big \downarrow \) 3077

\(\displaystyle -\frac {\int \frac {\csc ^3(a+b x)}{\sqrt {d \tan (a+b x)}}dx}{3 d^2}-\frac {2 \csc ^3(a+b x)}{9 b d (d \tan (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {1}{\sin (a+b x)^3 \sqrt {d \tan (a+b x)}}dx}{3 d^2}-\frac {2 \csc ^3(a+b x)}{9 b d (d \tan (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3079

\(\displaystyle -\frac {\frac {2}{5} \int \frac {\csc (a+b x)}{\sqrt {d \tan (a+b x)}}dx-\frac {2 d \csc (a+b x)}{5 b (d \tan (a+b x))^{3/2}}}{3 d^2}-\frac {2 \csc ^3(a+b x)}{9 b d (d \tan (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {2}{5} \int \frac {1}{\sin (a+b x) \sqrt {d \tan (a+b x)}}dx-\frac {2 d \csc (a+b x)}{5 b (d \tan (a+b x))^{3/2}}}{3 d^2}-\frac {2 \csc ^3(a+b x)}{9 b d (d \tan (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3081

\(\displaystyle -\frac {\frac {2 \sqrt {\sin (a+b x)} \int \frac {\sqrt {\cos (a+b x)}}{\sin ^{\frac {3}{2}}(a+b x)}dx}{5 \sqrt {\cos (a+b x)} \sqrt {d \tan (a+b x)}}-\frac {2 d \csc (a+b x)}{5 b (d \tan (a+b x))^{3/2}}}{3 d^2}-\frac {2 \csc ^3(a+b x)}{9 b d (d \tan (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {2 \sqrt {\sin (a+b x)} \int \frac {\sqrt {\cos (a+b x)}}{\sin (a+b x)^{3/2}}dx}{5 \sqrt {\cos (a+b x)} \sqrt {d \tan (a+b x)}}-\frac {2 d \csc (a+b x)}{5 b (d \tan (a+b x))^{3/2}}}{3 d^2}-\frac {2 \csc ^3(a+b x)}{9 b d (d \tan (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3050

\(\displaystyle -\frac {\frac {2 \sqrt {\sin (a+b x)} \left (-2 \int \sqrt {\cos (a+b x)} \sqrt {\sin (a+b x)}dx-\frac {2 \cos ^{\frac {3}{2}}(a+b x)}{b \sqrt {\sin (a+b x)}}\right )}{5 \sqrt {\cos (a+b x)} \sqrt {d \tan (a+b x)}}-\frac {2 d \csc (a+b x)}{5 b (d \tan (a+b x))^{3/2}}}{3 d^2}-\frac {2 \csc ^3(a+b x)}{9 b d (d \tan (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {2 \sqrt {\sin (a+b x)} \left (-2 \int \sqrt {\cos (a+b x)} \sqrt {\sin (a+b x)}dx-\frac {2 \cos ^{\frac {3}{2}}(a+b x)}{b \sqrt {\sin (a+b x)}}\right )}{5 \sqrt {\cos (a+b x)} \sqrt {d \tan (a+b x)}}-\frac {2 d \csc (a+b x)}{5 b (d \tan (a+b x))^{3/2}}}{3 d^2}-\frac {2 \csc ^3(a+b x)}{9 b d (d \tan (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3052

\(\displaystyle -\frac {\frac {2 \sqrt {\sin (a+b x)} \left (-\frac {2 \sqrt {\sin (a+b x)} \sqrt {\cos (a+b x)} \int \sqrt {\sin (2 a+2 b x)}dx}{\sqrt {\sin (2 a+2 b x)}}-\frac {2 \cos ^{\frac {3}{2}}(a+b x)}{b \sqrt {\sin (a+b x)}}\right )}{5 \sqrt {\cos (a+b x)} \sqrt {d \tan (a+b x)}}-\frac {2 d \csc (a+b x)}{5 b (d \tan (a+b x))^{3/2}}}{3 d^2}-\frac {2 \csc ^3(a+b x)}{9 b d (d \tan (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {2 \sqrt {\sin (a+b x)} \left (-\frac {2 \sqrt {\sin (a+b x)} \sqrt {\cos (a+b x)} \int \sqrt {\sin (2 a+2 b x)}dx}{\sqrt {\sin (2 a+2 b x)}}-\frac {2 \cos ^{\frac {3}{2}}(a+b x)}{b \sqrt {\sin (a+b x)}}\right )}{5 \sqrt {\cos (a+b x)} \sqrt {d \tan (a+b x)}}-\frac {2 d \csc (a+b x)}{5 b (d \tan (a+b x))^{3/2}}}{3 d^2}-\frac {2 \csc ^3(a+b x)}{9 b d (d \tan (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {\frac {2 \sqrt {\sin (a+b x)} \left (-\frac {2 \cos ^{\frac {3}{2}}(a+b x)}{b \sqrt {\sin (a+b x)}}-\frac {2 \sqrt {\sin (a+b x)} \sqrt {\cos (a+b x)} E\left (\left .a+b x-\frac {\pi }{4}\right |2\right )}{b \sqrt {\sin (2 a+2 b x)}}\right )}{5 \sqrt {\cos (a+b x)} \sqrt {d \tan (a+b x)}}-\frac {2 d \csc (a+b x)}{5 b (d \tan (a+b x))^{3/2}}}{3 d^2}-\frac {2 \csc ^3(a+b x)}{9 b d (d \tan (a+b x))^{3/2}}\)

Input:

Int[Csc[a + b*x]^3/(d*Tan[a + b*x])^(5/2),x]
 

Output:

(-2*Csc[a + b*x]^3)/(9*b*d*(d*Tan[a + b*x])^(3/2)) - ((-2*d*Csc[a + b*x])/ 
(5*b*(d*Tan[a + b*x])^(3/2)) + (2*Sqrt[Sin[a + b*x]]*((-2*Cos[a + b*x]^(3/ 
2))/(b*Sqrt[Sin[a + b*x]]) - (2*Sqrt[Cos[a + b*x]]*EllipticE[a - Pi/4 + b* 
x, 2]*Sqrt[Sin[a + b*x]])/(b*Sqrt[Sin[2*a + 2*b*x]])))/(5*Sqrt[Cos[a + b*x 
]]*Sqrt[d*Tan[a + b*x]]))/(3*d^2)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3050
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_), x_Symbol] :> Simp[(b*Cos[e + f*x])^(n + 1)*((a*Sin[e + f*x])^(m + 1)/(a 
*b*f*(m + 1))), x] + Simp[(m + n + 2)/(a^2*(m + 1))   Int[(b*Cos[e + f*x])^ 
n*(a*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, - 
1] && IntegersQ[2*m, 2*n]
 

rule 3052
Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]] 
, x_Symbol] :> Simp[Sqrt[a*Sin[e + f*x]]*(Sqrt[b*Cos[e + f*x]]/Sqrt[Sin[2*e 
 + 2*f*x]])   Int[Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f}, x]
 

rule 3077
Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^( 
n_), x_Symbol] :> Simp[(a*Sin[e + f*x])^m*((b*Tan[e + f*x])^(n + 1)/(b*f*(m 
 + n + 1))), x] - Simp[(n + 1)/(b^2*(m + n + 1))   Int[(a*Sin[e + f*x])^m*( 
b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && LtQ[n, -1] 
&& NeQ[m + n + 1, 0] && IntegersQ[2*m, 2*n] &&  !(EqQ[n, -3/2] && EqQ[m, 1] 
)
 

rule 3079
Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n 
_.), x_Symbol] :> Simp[b*(a*Sin[e + f*x])^(m + 2)*((b*Tan[e + f*x])^(n - 1) 
/(a^2*f*(m + n + 1))), x] + Simp[(m + 2)/(a^2*(m + n + 1))   Int[(a*Sin[e + 
 f*x])^(m + 2)*(b*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && L 
tQ[m, -1] && NeQ[m + n + 1, 0] && IntegersQ[2*m, 2*n]
 

rule 3081
Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^( 
n_), x_Symbol] :> Simp[Cos[e + f*x]^n*((b*Tan[e + f*x])^n/(a*Sin[e + f*x])^ 
n)   Int[(a*Sin[e + f*x])^(m + n)/Cos[e + f*x]^n, x], x] /; FreeQ[{a, b, e, 
 f, m, n}, x] &&  !IntegerQ[n] && (ILtQ[m, 0] || (EqQ[m, 1] && EqQ[n, -2^(- 
1)]) || IntegersQ[m - 1/2, n - 1/2])
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(285\) vs. \(2(123)=246\).

Time = 1.00 (sec) , antiderivative size = 286, normalized size of antiderivative = 2.04

method result size
default \(-\frac {\sqrt {-\frac {2 \sin \left (b x +a \right ) \cos \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}\, \left (\sqrt {\csc \left (b x +a \right )-\cot \left (b x +a \right )+1}\, \sqrt {-2 \csc \left (b x +a \right )+2 \cot \left (b x +a \right )+2}\, \sqrt {-\csc \left (b x +a \right )+\cot \left (b x +a \right )}\, \operatorname {EllipticE}\left (\sqrt {\csc \left (b x +a \right )-\cot \left (b x +a \right )+1}, \frac {\sqrt {2}}{2}\right ) \left (6+6 \sec \left (b x +a \right )\right )+\sqrt {\csc \left (b x +a \right )-\cot \left (b x +a \right )+1}\, \sqrt {-2 \csc \left (b x +a \right )+2 \cot \left (b x +a \right )+2}\, \sqrt {-\csc \left (b x +a \right )+\cot \left (b x +a \right )}\, \operatorname {EllipticF}\left (\sqrt {\csc \left (b x +a \right )-\cot \left (b x +a \right )+1}, \frac {\sqrt {2}}{2}\right ) \left (-3-3 \sec \left (b x +a \right )\right )-6-3 \cot \left (b x +a \right ) \csc \left (b x +a \right )+5 \cot \left (b x +a \right ) \csc \left (b x +a \right )^{3}\right ) \sqrt {2}}{45 b \sqrt {-\frac {\sin \left (b x +a \right ) \cos \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}\, d^{2} \sqrt {d \tan \left (b x +a \right )}}\) \(286\)

Input:

int(csc(b*x+a)^3/(d*tan(b*x+a))^(5/2),x,method=_RETURNVERBOSE)
 

Output:

-1/45/b*(-2*sin(b*x+a)*cos(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)/(-sin(b*x+a)*cos 
(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)/d^2/(d*tan(b*x+a))^(1/2)*((csc(b*x+a)-cot( 
b*x+a)+1)^(1/2)*(-2*csc(b*x+a)+2*cot(b*x+a)+2)^(1/2)*(-csc(b*x+a)+cot(b*x+ 
a))^(1/2)*EllipticE((csc(b*x+a)-cot(b*x+a)+1)^(1/2),1/2*2^(1/2))*(6+6*sec( 
b*x+a))+(csc(b*x+a)-cot(b*x+a)+1)^(1/2)*(-2*csc(b*x+a)+2*cot(b*x+a)+2)^(1/ 
2)*(-csc(b*x+a)+cot(b*x+a))^(1/2)*EllipticF((csc(b*x+a)-cot(b*x+a)+1)^(1/2 
),1/2*2^(1/2))*(-3-3*sec(b*x+a))-6-3*cot(b*x+a)*csc(b*x+a)+5*cot(b*x+a)*cs 
c(b*x+a)^3)*2^(1/2)
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.14 (sec) , antiderivative size = 309, normalized size of antiderivative = 2.21 \[ \int \frac {\csc ^3(a+b x)}{(d \tan (a+b x))^{5/2}} \, dx=-\frac {2 \, {\left (3 \, {\left (-i \, \cos \left (b x + a\right )^{4} + 2 i \, \cos \left (b x + a\right )^{2} - i\right )} \sqrt {i \, d} E(\arcsin \left (\cos \left (b x + a\right ) + i \, \sin \left (b x + a\right )\right )\,|\,-1) \sin \left (b x + a\right ) + 3 \, {\left (i \, \cos \left (b x + a\right )^{4} - 2 i \, \cos \left (b x + a\right )^{2} + i\right )} \sqrt {-i \, d} E(\arcsin \left (\cos \left (b x + a\right ) - i \, \sin \left (b x + a\right )\right )\,|\,-1) \sin \left (b x + a\right ) + 3 \, {\left (i \, \cos \left (b x + a\right )^{4} - 2 i \, \cos \left (b x + a\right )^{2} + i\right )} \sqrt {i \, d} F(\arcsin \left (\cos \left (b x + a\right ) + i \, \sin \left (b x + a\right )\right )\,|\,-1) \sin \left (b x + a\right ) + 3 \, {\left (-i \, \cos \left (b x + a\right )^{4} + 2 i \, \cos \left (b x + a\right )^{2} - i\right )} \sqrt {-i \, d} F(\arcsin \left (\cos \left (b x + a\right ) - i \, \sin \left (b x + a\right )\right )\,|\,-1) \sin \left (b x + a\right ) - {\left (6 \, \cos \left (b x + a\right )^{6} - 15 \, \cos \left (b x + a\right )^{4} + 4 \, \cos \left (b x + a\right )^{2}\right )} \sqrt {\frac {d \sin \left (b x + a\right )}{\cos \left (b x + a\right )}}\right )}}{45 \, {\left (b d^{3} \cos \left (b x + a\right )^{4} - 2 \, b d^{3} \cos \left (b x + a\right )^{2} + b d^{3}\right )} \sin \left (b x + a\right )} \] Input:

integrate(csc(b*x+a)^3/(d*tan(b*x+a))^(5/2),x, algorithm="fricas")
 

Output:

-2/45*(3*(-I*cos(b*x + a)^4 + 2*I*cos(b*x + a)^2 - I)*sqrt(I*d)*elliptic_e 
(arcsin(cos(b*x + a) + I*sin(b*x + a)), -1)*sin(b*x + a) + 3*(I*cos(b*x + 
a)^4 - 2*I*cos(b*x + a)^2 + I)*sqrt(-I*d)*elliptic_e(arcsin(cos(b*x + a) - 
 I*sin(b*x + a)), -1)*sin(b*x + a) + 3*(I*cos(b*x + a)^4 - 2*I*cos(b*x + a 
)^2 + I)*sqrt(I*d)*elliptic_f(arcsin(cos(b*x + a) + I*sin(b*x + a)), -1)*s 
in(b*x + a) + 3*(-I*cos(b*x + a)^4 + 2*I*cos(b*x + a)^2 - I)*sqrt(-I*d)*el 
liptic_f(arcsin(cos(b*x + a) - I*sin(b*x + a)), -1)*sin(b*x + a) - (6*cos( 
b*x + a)^6 - 15*cos(b*x + a)^4 + 4*cos(b*x + a)^2)*sqrt(d*sin(b*x + a)/cos 
(b*x + a)))/((b*d^3*cos(b*x + a)^4 - 2*b*d^3*cos(b*x + a)^2 + b*d^3)*sin(b 
*x + a))
 

Sympy [F]

\[ \int \frac {\csc ^3(a+b x)}{(d \tan (a+b x))^{5/2}} \, dx=\int \frac {\csc ^{3}{\left (a + b x \right )}}{\left (d \tan {\left (a + b x \right )}\right )^{\frac {5}{2}}}\, dx \] Input:

integrate(csc(b*x+a)**3/(d*tan(b*x+a))**(5/2),x)
 

Output:

Integral(csc(a + b*x)**3/(d*tan(a + b*x))**(5/2), x)
 

Maxima [F]

\[ \int \frac {\csc ^3(a+b x)}{(d \tan (a+b x))^{5/2}} \, dx=\int { \frac {\csc \left (b x + a\right )^{3}}{\left (d \tan \left (b x + a\right )\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate(csc(b*x+a)^3/(d*tan(b*x+a))^(5/2),x, algorithm="maxima")
 

Output:

integrate(csc(b*x + a)^3/(d*tan(b*x + a))^(5/2), x)
 

Giac [F]

\[ \int \frac {\csc ^3(a+b x)}{(d \tan (a+b x))^{5/2}} \, dx=\int { \frac {\csc \left (b x + a\right )^{3}}{\left (d \tan \left (b x + a\right )\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate(csc(b*x+a)^3/(d*tan(b*x+a))^(5/2),x, algorithm="giac")
 

Output:

integrate(csc(b*x + a)^3/(d*tan(b*x + a))^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\csc ^3(a+b x)}{(d \tan (a+b x))^{5/2}} \, dx=\int \frac {1}{{\sin \left (a+b\,x\right )}^3\,{\left (d\,\mathrm {tan}\left (a+b\,x\right )\right )}^{5/2}} \,d x \] Input:

int(1/(sin(a + b*x)^3*(d*tan(a + b*x))^(5/2)),x)
                                                                                    
                                                                                    
 

Output:

int(1/(sin(a + b*x)^3*(d*tan(a + b*x))^(5/2)), x)
 

Reduce [F]

\[ \int \frac {\csc ^3(a+b x)}{(d \tan (a+b x))^{5/2}} \, dx=\frac {\sqrt {d}\, \left (\int \frac {\sqrt {\tan \left (b x +a \right )}\, \csc \left (b x +a \right )^{3}}{\tan \left (b x +a \right )^{3}}d x \right )}{d^{3}} \] Input:

int(csc(b*x+a)^3/(d*tan(b*x+a))^(5/2),x)
 

Output:

(sqrt(d)*int((sqrt(tan(a + b*x))*csc(a + b*x)**3)/tan(a + b*x)**3,x))/d**3