\(\int \sqrt {b \sin (e+f x)} \sqrt [3]{d \tan (e+f x)} \, dx\) [154]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 64 \[ \int \sqrt {b \sin (e+f x)} \sqrt [3]{d \tan (e+f x)} \, dx=\frac {6 \cos ^2(e+f x)^{2/3} \operatorname {Hypergeometric2F1}\left (\frac {2}{3},\frac {11}{12},\frac {23}{12},\sin ^2(e+f x)\right ) \sqrt {b \sin (e+f x)} (d \tan (e+f x))^{4/3}}{11 d f} \] Output:

6/11*(cos(f*x+e)^2)^(2/3)*hypergeom([2/3, 11/12],[23/12],sin(f*x+e)^2)*(b* 
sin(f*x+e))^(1/2)*(d*tan(f*x+e))^(4/3)/d/f
 

Mathematica [A] (verified)

Time = 10.84 (sec) , antiderivative size = 66, normalized size of antiderivative = 1.03 \[ \int \sqrt {b \sin (e+f x)} \sqrt [3]{d \tan (e+f x)} \, dx=\frac {6 \operatorname {Hypergeometric2F1}\left (\frac {11}{12},\frac {5}{4},\frac {23}{12},-\tan ^2(e+f x)\right ) \sqrt [4]{\sec ^2(e+f x)} \sqrt {b \sin (e+f x)} (d \tan (e+f x))^{4/3}}{11 d f} \] Input:

Integrate[Sqrt[b*Sin[e + f*x]]*(d*Tan[e + f*x])^(1/3),x]
 

Output:

(6*Hypergeometric2F1[11/12, 5/4, 23/12, -Tan[e + f*x]^2]*(Sec[e + f*x]^2)^ 
(1/4)*Sqrt[b*Sin[e + f*x]]*(d*Tan[e + f*x])^(4/3))/(11*d*f)
 

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {3042, 3082, 3042, 3057}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {b \sin (e+f x)} \sqrt [3]{d \tan (e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {b \sin (e+f x)} \sqrt [3]{d \tan (e+f x)}dx\)

\(\Big \downarrow \) 3082

\(\displaystyle \frac {b \cos ^{\frac {4}{3}}(e+f x) (d \tan (e+f x))^{4/3} \int \frac {(b \sin (e+f x))^{5/6}}{\sqrt [3]{\cos (e+f x)}}dx}{d (b \sin (e+f x))^{4/3}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b \cos ^{\frac {4}{3}}(e+f x) (d \tan (e+f x))^{4/3} \int \frac {(b \sin (e+f x))^{5/6}}{\sqrt [3]{\cos (e+f x)}}dx}{d (b \sin (e+f x))^{4/3}}\)

\(\Big \downarrow \) 3057

\(\displaystyle \frac {6 \cos ^2(e+f x)^{2/3} \sqrt {b \sin (e+f x)} (d \tan (e+f x))^{4/3} \operatorname {Hypergeometric2F1}\left (\frac {2}{3},\frac {11}{12},\frac {23}{12},\sin ^2(e+f x)\right )}{11 d f}\)

Input:

Int[Sqrt[b*Sin[e + f*x]]*(d*Tan[e + f*x])^(1/3),x]
 

Output:

(6*(Cos[e + f*x]^2)^(2/3)*Hypergeometric2F1[2/3, 11/12, 23/12, Sin[e + f*x 
]^2]*Sqrt[b*Sin[e + f*x]]*(d*Tan[e + f*x])^(4/3))/(11*d*f)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3057
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_), x_Symbol] :> Simp[b^(2*IntPart[(n - 1)/2] + 1)*(b*Cos[e + f*x])^(2*Frac 
Part[(n - 1)/2])*((a*Sin[e + f*x])^(m + 1)/(a*f*(m + 1)*(Cos[e + f*x]^2)^Fr 
acPart[(n - 1)/2]))*Hypergeometric2F1[(1 + m)/2, (1 - n)/2, (3 + m)/2, Sin[ 
e + f*x]^2], x] /; FreeQ[{a, b, e, f, m, n}, x]
 

rule 3082
Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^( 
n_), x_Symbol] :> Simp[a*Cos[e + f*x]^(n + 1)*((b*Tan[e + f*x])^(n + 1)/(b* 
(a*Sin[e + f*x])^(n + 1)))   Int[(a*Sin[e + f*x])^(m + n)/Cos[e + f*x]^n, x 
], x] /; FreeQ[{a, b, e, f, m, n}, x] &&  !IntegerQ[n]
 
Maple [F]

\[\int \sqrt {b \sin \left (f x +e \right )}\, \left (d \tan \left (f x +e \right )\right )^{\frac {1}{3}}d x\]

Input:

int((b*sin(f*x+e))^(1/2)*(d*tan(f*x+e))^(1/3),x)
 

Output:

int((b*sin(f*x+e))^(1/2)*(d*tan(f*x+e))^(1/3),x)
 

Fricas [F]

\[ \int \sqrt {b \sin (e+f x)} \sqrt [3]{d \tan (e+f x)} \, dx=\int { \sqrt {b \sin \left (f x + e\right )} \left (d \tan \left (f x + e\right )\right )^{\frac {1}{3}} \,d x } \] Input:

integrate((b*sin(f*x+e))^(1/2)*(d*tan(f*x+e))^(1/3),x, algorithm="fricas")
 

Output:

integral(sqrt(b*sin(f*x + e))*(d*tan(f*x + e))^(1/3), x)
 

Sympy [F]

\[ \int \sqrt {b \sin (e+f x)} \sqrt [3]{d \tan (e+f x)} \, dx=\int \sqrt {b \sin {\left (e + f x \right )}} \sqrt [3]{d \tan {\left (e + f x \right )}}\, dx \] Input:

integrate((b*sin(f*x+e))**(1/2)*(d*tan(f*x+e))**(1/3),x)
 

Output:

Integral(sqrt(b*sin(e + f*x))*(d*tan(e + f*x))**(1/3), x)
 

Maxima [F]

\[ \int \sqrt {b \sin (e+f x)} \sqrt [3]{d \tan (e+f x)} \, dx=\int { \sqrt {b \sin \left (f x + e\right )} \left (d \tan \left (f x + e\right )\right )^{\frac {1}{3}} \,d x } \] Input:

integrate((b*sin(f*x+e))^(1/2)*(d*tan(f*x+e))^(1/3),x, algorithm="maxima")
 

Output:

integrate(sqrt(b*sin(f*x + e))*(d*tan(f*x + e))^(1/3), x)
 

Giac [F]

\[ \int \sqrt {b \sin (e+f x)} \sqrt [3]{d \tan (e+f x)} \, dx=\int { \sqrt {b \sin \left (f x + e\right )} \left (d \tan \left (f x + e\right )\right )^{\frac {1}{3}} \,d x } \] Input:

integrate((b*sin(f*x+e))^(1/2)*(d*tan(f*x+e))^(1/3),x, algorithm="giac")
 

Output:

integrate(sqrt(b*sin(f*x + e))*(d*tan(f*x + e))^(1/3), x)
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {b \sin (e+f x)} \sqrt [3]{d \tan (e+f x)} \, dx=\int \sqrt {b\,\sin \left (e+f\,x\right )}\,{\left (d\,\mathrm {tan}\left (e+f\,x\right )\right )}^{1/3} \,d x \] Input:

int((b*sin(e + f*x))^(1/2)*(d*tan(e + f*x))^(1/3),x)
 

Output:

int((b*sin(e + f*x))^(1/2)*(d*tan(e + f*x))^(1/3), x)
 

Reduce [F]

\[ \int \sqrt {b \sin (e+f x)} \sqrt [3]{d \tan (e+f x)} \, dx=d^{\frac {1}{3}} \sqrt {b}\, \left (\int \tan \left (f x +e \right )^{\frac {1}{3}} \sqrt {\sin \left (f x +e \right )}d x \right ) \] Input:

int((b*sin(f*x+e))^(1/2)*(d*tan(f*x+e))^(1/3),x)
 

Output:

d**(1/3)*sqrt(b)*int(tan(e + f*x)**(1/3)*sqrt(sin(e + f*x)),x)