\(\int \frac {\cot ^4(e+f x)}{(d \cot (e+f x))^{3/2}} \, dx\) [220]

Optimal result
Mathematica [A] (verified)
Rubi [A] (warning: unable to verify)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 159 \[ \int \frac {\cot ^4(e+f x)}{(d \cot (e+f x))^{3/2}} \, dx=-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} d^{3/2} f}+\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} d^{3/2} f}-\frac {\text {arctanh}\left (\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}+\sqrt {d} \cot (e+f x)}\right )}{\sqrt {2} d^{3/2} f}-\frac {2 (d \cot (e+f x))^{3/2}}{3 d^3 f} \] Output:

-1/2*arctan(1-2^(1/2)*(d*cot(f*x+e))^(1/2)/d^(1/2))*2^(1/2)/d^(3/2)/f+1/2* 
arctan(1+2^(1/2)*(d*cot(f*x+e))^(1/2)/d^(1/2))*2^(1/2)/d^(3/2)/f-1/2*arcta 
nh(2^(1/2)*(d*cot(f*x+e))^(1/2)/(d^(1/2)+d^(1/2)*cot(f*x+e)))*2^(1/2)/d^(3 
/2)/f-2/3*(d*cot(f*x+e))^(3/2)/d^3/f
 

Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.63 \[ \int \frac {\cot ^4(e+f x)}{(d \cot (e+f x))^{3/2}} \, dx=-\frac {\cot ^{\frac {5}{4}}(e+f x) \left (-3 \arctan \left (\sqrt [4]{-\cot ^2(e+f x)}\right ) \sqrt [4]{-\cot (e+f x)}+3 \text {arctanh}\left (\sqrt [4]{-\cot ^2(e+f x)}\right ) \sqrt [4]{-\cot (e+f x)}+2 \cot ^{\frac {7}{4}}(e+f x)\right )}{3 f (d \cot (e+f x))^{3/2}} \] Input:

Integrate[Cot[e + f*x]^4/(d*Cot[e + f*x])^(3/2),x]
 

Output:

-1/3*(Cot[e + f*x]^(5/4)*(-3*ArcTan[(-Cot[e + f*x]^2)^(1/4)]*(-Cot[e + f*x 
])^(1/4) + 3*ArcTanh[(-Cot[e + f*x]^2)^(1/4)]*(-Cot[e + f*x])^(1/4) + 2*Co 
t[e + f*x]^(7/4)))/(f*(d*Cot[e + f*x])^(3/2))
 

Rubi [A] (warning: unable to verify)

Time = 0.48 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.26, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.667, Rules used = {2030, 3042, 3954, 3042, 3957, 266, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^4(e+f x)}{(d \cot (e+f x))^{3/2}} \, dx\)

\(\Big \downarrow \) 2030

\(\displaystyle \frac {\int (d \cot (e+f x))^{5/2}dx}{d^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \left (-d \tan \left (e+f x+\frac {\pi }{2}\right )\right )^{5/2}dx}{d^4}\)

\(\Big \downarrow \) 3954

\(\displaystyle \frac {d^2 \left (-\int \sqrt {d \cot (e+f x)}dx\right )-\frac {2 d (d \cot (e+f x))^{3/2}}{3 f}}{d^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {d^2 \left (-\int \sqrt {-d \tan \left (e+f x+\frac {\pi }{2}\right )}dx\right )-\frac {2 d (d \cot (e+f x))^{3/2}}{3 f}}{d^4}\)

\(\Big \downarrow \) 3957

\(\displaystyle \frac {\frac {d^3 \int \frac {\sqrt {d \cot (e+f x)}}{\cot ^2(e+f x) d^2+d^2}d(d \cot (e+f x))}{f}-\frac {2 d (d \cot (e+f x))^{3/2}}{3 f}}{d^4}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {\frac {2 d^3 \int \frac {d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}}{f}-\frac {2 d (d \cot (e+f x))^{3/2}}{3 f}}{d^4}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {\frac {2 d^3 \left (\frac {1}{2} \int \frac {d^2 \cot ^2(e+f x)+d}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}-\frac {1}{2} \int \frac {d-d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}\right )}{f}-\frac {2 d (d \cot (e+f x))^{3/2}}{3 f}}{d^4}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {\frac {2 d^3 \left (\frac {1}{2} \left (\frac {1}{2} \int \frac {1}{d^2 \cot ^2(e+f x)-\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}+\frac {1}{2} \int \frac {1}{d^2 \cot ^2(e+f x)+\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}\right )-\frac {1}{2} \int \frac {d-d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}\right )}{f}-\frac {2 d (d \cot (e+f x))^{3/2}}{3 f}}{d^4}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\frac {2 d^3 \left (\frac {1}{2} \left (\frac {\int \frac {1}{-d^2 \cot ^2(e+f x)-1}d\left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}-\frac {\int \frac {1}{-d^2 \cot ^2(e+f x)-1}d\left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}\right )-\frac {1}{2} \int \frac {d-d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}\right )}{f}-\frac {2 d (d \cot (e+f x))^{3/2}}{3 f}}{d^4}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {2 d^3 \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}\right )-\frac {1}{2} \int \frac {d-d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}\right )}{f}-\frac {2 d (d \cot (e+f x))^{3/2}}{3 f}}{d^4}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {\frac {2 d^3 \left (\frac {1}{2} \left (\frac {\int -\frac {\sqrt {2} \sqrt {d}-2 \sqrt {d \cot (e+f x)}}{d^2 \cot ^2(e+f x)-\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}+\frac {\int -\frac {\sqrt {2} \left (\sqrt {d}+\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{d^2 \cot ^2(e+f x)+\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}\right )\right )}{f}-\frac {2 d (d \cot (e+f x))^{3/2}}{3 f}}{d^4}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {2 d^3 \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2} \sqrt {d}-2 \sqrt {d \cot (e+f x)}}{d^2 \cot ^2(e+f x)-\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}-\frac {\int \frac {\sqrt {2} \left (\sqrt {d}+\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{d^2 \cot ^2(e+f x)+\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}\right )\right )}{f}-\frac {2 d (d \cot (e+f x))^{3/2}}{3 f}}{d^4}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {2 d^3 \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2} \sqrt {d}-2 \sqrt {d \cot (e+f x)}}{d^2 \cot ^2(e+f x)-\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}-\frac {\int \frac {\sqrt {d}+\sqrt {2} \sqrt {d \cot (e+f x)}}{d^2 \cot ^2(e+f x)+\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {d}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}\right )\right )}{f}-\frac {2 d (d \cot (e+f x))^{3/2}}{3 f}}{d^4}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\frac {2 d^3 \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}\right )+\frac {1}{2} \left (\frac {\log \left (-\sqrt {2} d^{3/2} \cot (e+f x)+d^2 \cot ^2(e+f x)+d\right )}{2 \sqrt {2} \sqrt {d}}-\frac {\log \left (\sqrt {2} d^{3/2} \cot (e+f x)+d^2 \cot ^2(e+f x)+d\right )}{2 \sqrt {2} \sqrt {d}}\right )\right )}{f}-\frac {2 d (d \cot (e+f x))^{3/2}}{3 f}}{d^4}\)

Input:

Int[Cot[e + f*x]^4/(d*Cot[e + f*x])^(3/2),x]
 

Output:

((-2*d*(d*Cot[e + f*x])^(3/2))/(3*f) + (2*d^3*((-(ArcTan[1 - Sqrt[2]*Sqrt[ 
d]*Cot[e + f*x]]/(Sqrt[2]*Sqrt[d])) + ArcTan[1 + Sqrt[2]*Sqrt[d]*Cot[e + f 
*x]]/(Sqrt[2]*Sqrt[d]))/2 + (Log[d - Sqrt[2]*d^(3/2)*Cot[e + f*x] + d^2*Co 
t[e + f*x]^2]/(2*Sqrt[2]*Sqrt[d]) - Log[d + Sqrt[2]*d^(3/2)*Cot[e + f*x] + 
 d^2*Cot[e + f*x]^2]/(2*Sqrt[2]*Sqrt[d]))/2))/f)/d^4
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3954
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((b*Tan[c + d 
*x])^(n - 1)/(d*(n - 1))), x] - Simp[b^2   Int[(b*Tan[c + d*x])^(n - 2), x] 
, x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]
 

rule 3957
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Subst[Int 
[x^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{b, c, d, n}, x] && 
!IntegerQ[n]
 
Maple [A] (verified)

Time = 0.17 (sec) , antiderivative size = 156, normalized size of antiderivative = 0.98

method result size
derivativedivides \(-\frac {2 \left (\frac {\left (d \cot \left (f x +e \right )\right )^{\frac {3}{2}}}{3}-\frac {d^{2} \sqrt {2}\, \left (\ln \left (\frac {d \cot \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \cot \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \cot \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \cot \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \cot \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \cot \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (d^{2}\right )^{\frac {1}{4}}}\right )}{f \,d^{3}}\) \(156\)
default \(-\frac {2 \left (\frac {\left (d \cot \left (f x +e \right )\right )^{\frac {3}{2}}}{3}-\frac {d^{2} \sqrt {2}\, \left (\ln \left (\frac {d \cot \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \cot \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \cot \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \cot \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \cot \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \cot \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (d^{2}\right )^{\frac {1}{4}}}\right )}{f \,d^{3}}\) \(156\)

Input:

int(cot(f*x+e)^4/(d*cot(f*x+e))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-2/f/d^3*(1/3*(d*cot(f*x+e))^(3/2)-1/8*d^2/(d^2)^(1/4)*2^(1/2)*(ln((d*cot( 
f*x+e)-(d^2)^(1/4)*(d*cot(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2))/(d*cot(f*x+e) 
+(d^2)^(1/4)*(d*cot(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2)))+2*arctan(2^(1/2)/( 
d^2)^(1/4)*(d*cot(f*x+e))^(1/2)+1)-2*arctan(-2^(1/2)/(d^2)^(1/4)*(d*cot(f* 
x+e))^(1/2)+1)))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 359 vs. \(2 (124) = 248\).

Time = 0.09 (sec) , antiderivative size = 359, normalized size of antiderivative = 2.26 \[ \int \frac {\cot ^4(e+f x)}{(d \cot (e+f x))^{3/2}} \, dx=\frac {6 \, \sqrt {2} \sqrt {d} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {d \cos \left (2 \, f x + 2 \, e\right ) + d}{\sin \left (2 \, f x + 2 \, e\right )}}}{\sqrt {d}} + 1\right ) \sin \left (2 \, f x + 2 \, e\right ) + 6 \, \sqrt {2} \sqrt {d} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {d \cos \left (2 \, f x + 2 \, e\right ) + d}{\sin \left (2 \, f x + 2 \, e\right )}}}{\sqrt {d}} - 1\right ) \sin \left (2 \, f x + 2 \, e\right ) - 3 \, \sqrt {2} \sqrt {d} \log \left (\frac {\frac {\sqrt {2} \sqrt {\frac {d \cos \left (2 \, f x + 2 \, e\right ) + d}{\sin \left (2 \, f x + 2 \, e\right )}} \sin \left (2 \, f x + 2 \, e\right )}{\sqrt {d}} + \cos \left (2 \, f x + 2 \, e\right ) + \sin \left (2 \, f x + 2 \, e\right ) + 1}{\sin \left (2 \, f x + 2 \, e\right )}\right ) \sin \left (2 \, f x + 2 \, e\right ) + 3 \, \sqrt {2} \sqrt {d} \log \left (-\frac {\frac {\sqrt {2} \sqrt {\frac {d \cos \left (2 \, f x + 2 \, e\right ) + d}{\sin \left (2 \, f x + 2 \, e\right )}} \sin \left (2 \, f x + 2 \, e\right )}{\sqrt {d}} - \cos \left (2 \, f x + 2 \, e\right ) - \sin \left (2 \, f x + 2 \, e\right ) - 1}{\sin \left (2 \, f x + 2 \, e\right )}\right ) \sin \left (2 \, f x + 2 \, e\right ) - 8 \, \sqrt {\frac {d \cos \left (2 \, f x + 2 \, e\right ) + d}{\sin \left (2 \, f x + 2 \, e\right )}} {\left (\cos \left (2 \, f x + 2 \, e\right ) + 1\right )}}{12 \, d^{2} f \sin \left (2 \, f x + 2 \, e\right )} \] Input:

integrate(cot(f*x+e)^4/(d*cot(f*x+e))^(3/2),x, algorithm="fricas")
 

Output:

1/12*(6*sqrt(2)*sqrt(d)*arctan(sqrt(2)*sqrt((d*cos(2*f*x + 2*e) + d)/sin(2 
*f*x + 2*e))/sqrt(d) + 1)*sin(2*f*x + 2*e) + 6*sqrt(2)*sqrt(d)*arctan(sqrt 
(2)*sqrt((d*cos(2*f*x + 2*e) + d)/sin(2*f*x + 2*e))/sqrt(d) - 1)*sin(2*f*x 
 + 2*e) - 3*sqrt(2)*sqrt(d)*log((sqrt(2)*sqrt((d*cos(2*f*x + 2*e) + d)/sin 
(2*f*x + 2*e))*sin(2*f*x + 2*e)/sqrt(d) + cos(2*f*x + 2*e) + sin(2*f*x + 2 
*e) + 1)/sin(2*f*x + 2*e))*sin(2*f*x + 2*e) + 3*sqrt(2)*sqrt(d)*log(-(sqrt 
(2)*sqrt((d*cos(2*f*x + 2*e) + d)/sin(2*f*x + 2*e))*sin(2*f*x + 2*e)/sqrt( 
d) - cos(2*f*x + 2*e) - sin(2*f*x + 2*e) - 1)/sin(2*f*x + 2*e))*sin(2*f*x 
+ 2*e) - 8*sqrt((d*cos(2*f*x + 2*e) + d)/sin(2*f*x + 2*e))*(cos(2*f*x + 2* 
e) + 1))/(d^2*f*sin(2*f*x + 2*e))
 

Sympy [F]

\[ \int \frac {\cot ^4(e+f x)}{(d \cot (e+f x))^{3/2}} \, dx=\int \frac {\cot ^{4}{\left (e + f x \right )}}{\left (d \cot {\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(cot(f*x+e)**4/(d*cot(f*x+e))**(3/2),x)
 

Output:

Integral(cot(e + f*x)**4/(d*cot(e + f*x))**(3/2), x)
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.18 \[ \int \frac {\cot ^4(e+f x)}{(d \cot (e+f x))^{3/2}} \, dx=\frac {3 \, d^{2} {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} + 2 \, \sqrt {\frac {d}{\tan \left (f x + e\right )}}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} - 2 \, \sqrt {\frac {d}{\tan \left (f x + e\right )}}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} - \frac {\sqrt {2} \log \left (\sqrt {2} \sqrt {d} \sqrt {\frac {d}{\tan \left (f x + e\right )}} + d + \frac {d}{\tan \left (f x + e\right )}\right )}{\sqrt {d}} + \frac {\sqrt {2} \log \left (-\sqrt {2} \sqrt {d} \sqrt {\frac {d}{\tan \left (f x + e\right )}} + d + \frac {d}{\tan \left (f x + e\right )}\right )}{\sqrt {d}}\right )} - 8 \, \left (\frac {d}{\tan \left (f x + e\right )}\right )^{\frac {3}{2}}}{12 \, d^{3} f} \] Input:

integrate(cot(f*x+e)^4/(d*cot(f*x+e))^(3/2),x, algorithm="maxima")
 

Output:

1/12*(3*d^2*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(d) + 2*sqrt(d/tan( 
f*x + e)))/sqrt(d))/sqrt(d) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt( 
d) - 2*sqrt(d/tan(f*x + e)))/sqrt(d))/sqrt(d) - sqrt(2)*log(sqrt(2)*sqrt(d 
)*sqrt(d/tan(f*x + e)) + d + d/tan(f*x + e))/sqrt(d) + sqrt(2)*log(-sqrt(2 
)*sqrt(d)*sqrt(d/tan(f*x + e)) + d + d/tan(f*x + e))/sqrt(d)) - 8*(d/tan(f 
*x + e))^(3/2))/(d^3*f)
 

Giac [F]

\[ \int \frac {\cot ^4(e+f x)}{(d \cot (e+f x))^{3/2}} \, dx=\int { \frac {\cot \left (f x + e\right )^{4}}{\left (d \cot \left (f x + e\right )\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(cot(f*x+e)^4/(d*cot(f*x+e))^(3/2),x, algorithm="giac")
 

Output:

integrate(cot(f*x + e)^4/(d*cot(f*x + e))^(3/2), x)
 

Mupad [B] (verification not implemented)

Time = 0.51 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.48 \[ \int \frac {\cot ^4(e+f x)}{(d \cot (e+f x))^{3/2}} \, dx=\frac {{\left (-1\right )}^{1/4}\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {d\,\mathrm {cot}\left (e+f\,x\right )}}{\sqrt {d}}\right )}{d^{3/2}\,f}-\frac {2\,{\left (d\,\mathrm {cot}\left (e+f\,x\right )\right )}^{3/2}}{3\,d^3\,f}-\frac {{\left (-1\right )}^{1/4}\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {d\,\mathrm {cot}\left (e+f\,x\right )}}{\sqrt {d}}\right )}{d^{3/2}\,f} \] Input:

int(cot(e + f*x)^4/(d*cot(e + f*x))^(3/2),x)
 

Output:

((-1)^(1/4)*atan(((-1)^(1/4)*(d*cot(e + f*x))^(1/2))/d^(1/2)))/(d^(3/2)*f) 
 - (2*(d*cot(e + f*x))^(3/2))/(3*d^3*f) - ((-1)^(1/4)*atanh(((-1)^(1/4)*(d 
*cot(e + f*x))^(1/2))/d^(1/2)))/(d^(3/2)*f)
 

Reduce [F]

\[ \int \frac {\cot ^4(e+f x)}{(d \cot (e+f x))^{3/2}} \, dx=\frac {\sqrt {d}\, \left (\int \sqrt {\cot \left (f x +e \right )}\, \cot \left (f x +e \right )^{2}d x \right )}{d^{2}} \] Input:

int(cot(f*x+e)^4/(d*cot(f*x+e))^(3/2),x)
 

Output:

(sqrt(d)*int(sqrt(cot(e + f*x))*cot(e + f*x)**2,x))/d**2