\(\int \frac {(b \tan (e+f x))^{3/2}}{(d \sec (e+f x))^{7/2}} \, dx\) [305]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 131 \[ \int \frac {(b \tan (e+f x))^{3/2}}{(d \sec (e+f x))^{7/2}} \, dx=\frac {4 b^2 \operatorname {EllipticF}\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right ),2\right ) \sqrt {d \sec (e+f x)} \sqrt {\sin (e+f x)}}{21 d^4 f \sqrt {b \tan (e+f x)}}-\frac {2 b \sqrt {b \tan (e+f x)}}{7 f (d \sec (e+f x))^{7/2}}+\frac {2 b \sqrt {b \tan (e+f x)}}{21 d^2 f (d \sec (e+f x))^{3/2}} \] Output:

4/21*b^2*InverseJacobiAM(1/2*e-1/4*Pi+1/2*f*x,2^(1/2))*(d*sec(f*x+e))^(1/2 
)*sin(f*x+e)^(1/2)/d^4/f/(b*tan(f*x+e))^(1/2)-2/7*b*(b*tan(f*x+e))^(1/2)/f 
/(d*sec(f*x+e))^(7/2)+2/21*b*(b*tan(f*x+e))^(1/2)/d^2/f/(d*sec(f*x+e))^(3/ 
2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.81 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.62 \[ \int \frac {(b \tan (e+f x))^{3/2}}{(d \sec (e+f x))^{7/2}} \, dx=-\frac {b \left (1+3 \cos (2 (e+f x))-4 \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {3}{4},\frac {5}{4},-\tan ^2(e+f x)\right ) \sec ^2(e+f x)^{3/4}\right ) \sqrt {b \tan (e+f x)}}{21 d^2 f (d \sec (e+f x))^{3/2}} \] Input:

Integrate[(b*Tan[e + f*x])^(3/2)/(d*Sec[e + f*x])^(7/2),x]
 

Output:

-1/21*(b*(1 + 3*Cos[2*(e + f*x)] - 4*Hypergeometric2F1[1/4, 3/4, 5/4, -Tan 
[e + f*x]^2]*(Sec[e + f*x]^2)^(3/4))*Sqrt[b*Tan[e + f*x]])/(d^2*f*(d*Sec[e 
 + f*x])^(3/2))
 

Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.05, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 3090, 3042, 3092, 3042, 3096, 3042, 3121, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(b \tan (e+f x))^{3/2}}{(d \sec (e+f x))^{7/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(b \tan (e+f x))^{3/2}}{(d \sec (e+f x))^{7/2}}dx\)

\(\Big \downarrow \) 3090

\(\displaystyle \frac {b^2 \int \frac {1}{(d \sec (e+f x))^{3/2} \sqrt {b \tan (e+f x)}}dx}{7 d^2}-\frac {2 b \sqrt {b \tan (e+f x)}}{7 f (d \sec (e+f x))^{7/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b^2 \int \frac {1}{(d \sec (e+f x))^{3/2} \sqrt {b \tan (e+f x)}}dx}{7 d^2}-\frac {2 b \sqrt {b \tan (e+f x)}}{7 f (d \sec (e+f x))^{7/2}}\)

\(\Big \downarrow \) 3092

\(\displaystyle \frac {b^2 \left (\frac {2 \int \frac {\sqrt {d \sec (e+f x)}}{\sqrt {b \tan (e+f x)}}dx}{3 d^2}+\frac {2 \sqrt {b \tan (e+f x)}}{3 b f (d \sec (e+f x))^{3/2}}\right )}{7 d^2}-\frac {2 b \sqrt {b \tan (e+f x)}}{7 f (d \sec (e+f x))^{7/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b^2 \left (\frac {2 \int \frac {\sqrt {d \sec (e+f x)}}{\sqrt {b \tan (e+f x)}}dx}{3 d^2}+\frac {2 \sqrt {b \tan (e+f x)}}{3 b f (d \sec (e+f x))^{3/2}}\right )}{7 d^2}-\frac {2 b \sqrt {b \tan (e+f x)}}{7 f (d \sec (e+f x))^{7/2}}\)

\(\Big \downarrow \) 3096

\(\displaystyle \frac {b^2 \left (\frac {2 \sqrt {b \sin (e+f x)} \sqrt {d \sec (e+f x)} \int \frac {1}{\sqrt {b \sin (e+f x)}}dx}{3 d^2 \sqrt {b \tan (e+f x)}}+\frac {2 \sqrt {b \tan (e+f x)}}{3 b f (d \sec (e+f x))^{3/2}}\right )}{7 d^2}-\frac {2 b \sqrt {b \tan (e+f x)}}{7 f (d \sec (e+f x))^{7/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b^2 \left (\frac {2 \sqrt {b \sin (e+f x)} \sqrt {d \sec (e+f x)} \int \frac {1}{\sqrt {b \sin (e+f x)}}dx}{3 d^2 \sqrt {b \tan (e+f x)}}+\frac {2 \sqrt {b \tan (e+f x)}}{3 b f (d \sec (e+f x))^{3/2}}\right )}{7 d^2}-\frac {2 b \sqrt {b \tan (e+f x)}}{7 f (d \sec (e+f x))^{7/2}}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {b^2 \left (\frac {2 \sqrt {\sin (e+f x)} \sqrt {d \sec (e+f x)} \int \frac {1}{\sqrt {\sin (e+f x)}}dx}{3 d^2 \sqrt {b \tan (e+f x)}}+\frac {2 \sqrt {b \tan (e+f x)}}{3 b f (d \sec (e+f x))^{3/2}}\right )}{7 d^2}-\frac {2 b \sqrt {b \tan (e+f x)}}{7 f (d \sec (e+f x))^{7/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b^2 \left (\frac {2 \sqrt {\sin (e+f x)} \sqrt {d \sec (e+f x)} \int \frac {1}{\sqrt {\sin (e+f x)}}dx}{3 d^2 \sqrt {b \tan (e+f x)}}+\frac {2 \sqrt {b \tan (e+f x)}}{3 b f (d \sec (e+f x))^{3/2}}\right )}{7 d^2}-\frac {2 b \sqrt {b \tan (e+f x)}}{7 f (d \sec (e+f x))^{7/2}}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {b^2 \left (\frac {4 \sqrt {\sin (e+f x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right ),2\right ) \sqrt {d \sec (e+f x)}}{3 d^2 f \sqrt {b \tan (e+f x)}}+\frac {2 \sqrt {b \tan (e+f x)}}{3 b f (d \sec (e+f x))^{3/2}}\right )}{7 d^2}-\frac {2 b \sqrt {b \tan (e+f x)}}{7 f (d \sec (e+f x))^{7/2}}\)

Input:

Int[(b*Tan[e + f*x])^(3/2)/(d*Sec[e + f*x])^(7/2),x]
 

Output:

(-2*b*Sqrt[b*Tan[e + f*x]])/(7*f*(d*Sec[e + f*x])^(7/2)) + (b^2*((4*Ellipt 
icF[(e - Pi/2 + f*x)/2, 2]*Sqrt[d*Sec[e + f*x]]*Sqrt[Sin[e + f*x]])/(3*d^2 
*f*Sqrt[b*Tan[e + f*x]]) + (2*Sqrt[b*Tan[e + f*x]])/(3*b*f*(d*Sec[e + f*x] 
)^(3/2))))/(7*d^2)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3090
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n 
_), x_Symbol] :> Simp[b*(a*Sec[e + f*x])^m*((b*Tan[e + f*x])^(n - 1)/(f*m)) 
, x] - Simp[b^2*((n - 1)/(a^2*m))   Int[(a*Sec[e + f*x])^(m + 2)*(b*Tan[e + 
 f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[n, 1] && (LtQ[m, -1 
] || (EqQ[m, -1] && EqQ[n, 3/2])) && IntegersQ[2*m, 2*n]
 

rule 3092
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n 
_), x_Symbol] :> Simp[(-(a*Sec[e + f*x])^m)*((b*Tan[e + f*x])^(n + 1)/(b*f* 
m)), x] + Simp[(m + n + 1)/(a^2*m)   Int[(a*Sec[e + f*x])^(m + 2)*(b*Tan[e 
+ f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && (LtQ[m, -1] || (EqQ[m, -1 
] && EqQ[n, -2^(-1)])) && IntegersQ[2*m, 2*n]
 

rule 3096
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n 
_), x_Symbol] :> Simp[a^(m + n)*((b*Tan[e + f*x])^n/((a*Sec[e + f*x])^n*(b* 
Sin[e + f*x])^n))   Int[(b*Sin[e + f*x])^n/Cos[e + f*x]^(m + n), x], x] /; 
FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[n + 1/2] && IntegerQ[m + 1/2]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 2.23 (sec) , antiderivative size = 169, normalized size of antiderivative = 1.29

method result size
default \(-\frac {b \sqrt {b \tan \left (f x +e \right )}\, \left (\sqrt {2}\, \left (3 \cos \left (f x +e \right )^{3}-\cos \left (f x +e \right )\right )+i \sqrt {1+i \cot \left (f x +e \right )-i \csc \left (f x +e \right )}\, \sqrt {1-i \cot \left (f x +e \right )+i \csc \left (f x +e \right )}\, \sqrt {i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right )}\, \operatorname {EllipticF}\left (\sqrt {1+i \cot \left (f x +e \right )-i \csc \left (f x +e \right )}, \frac {\sqrt {2}}{2}\right ) \left (-2 \csc \left (f x +e \right )-2 \cot \left (f x +e \right )\right )\right ) \sqrt {2}}{21 f \,d^{3} \sqrt {d \sec \left (f x +e \right )}}\) \(169\)

Input:

int((b*tan(f*x+e))^(3/2)/(d*sec(f*x+e))^(7/2),x,method=_RETURNVERBOSE)
 

Output:

-1/21/f*b*(b*tan(f*x+e))^(1/2)/d^3/(d*sec(f*x+e))^(1/2)*(2^(1/2)*(3*cos(f* 
x+e)^3-cos(f*x+e))+I*(1+I*cot(f*x+e)-I*csc(f*x+e))^(1/2)*(1-I*cot(f*x+e)+I 
*csc(f*x+e))^(1/2)*(I*(csc(f*x+e)-cot(f*x+e)))^(1/2)*EllipticF((1+I*cot(f* 
x+e)-I*csc(f*x+e))^(1/2),1/2*2^(1/2))*(-2*csc(f*x+e)-2*cot(f*x+e)))*2^(1/2 
)
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.14 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.89 \[ \int \frac {(b \tan (e+f x))^{3/2}}{(d \sec (e+f x))^{7/2}} \, dx=\frac {2 \, {\left (\sqrt {-2 i \, b d} b {\rm weierstrassPInverse}\left (4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right ) + \sqrt {2 i \, b d} b {\rm weierstrassPInverse}\left (4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right ) - {\left (3 \, b \cos \left (f x + e\right )^{4} - b \cos \left (f x + e\right )^{2}\right )} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {\frac {d}{\cos \left (f x + e\right )}}\right )}}{21 \, d^{4} f} \] Input:

integrate((b*tan(f*x+e))^(3/2)/(d*sec(f*x+e))^(7/2),x, algorithm="fricas")
 

Output:

2/21*(sqrt(-2*I*b*d)*b*weierstrassPInverse(4, 0, cos(f*x + e) + I*sin(f*x 
+ e)) + sqrt(2*I*b*d)*b*weierstrassPInverse(4, 0, cos(f*x + e) - I*sin(f*x 
 + e)) - (3*b*cos(f*x + e)^4 - b*cos(f*x + e)^2)*sqrt(b*sin(f*x + e)/cos(f 
*x + e))*sqrt(d/cos(f*x + e)))/(d^4*f)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(b \tan (e+f x))^{3/2}}{(d \sec (e+f x))^{7/2}} \, dx=\text {Timed out} \] Input:

integrate((b*tan(f*x+e))**(3/2)/(d*sec(f*x+e))**(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(b \tan (e+f x))^{3/2}}{(d \sec (e+f x))^{7/2}} \, dx=\int { \frac {\left (b \tan \left (f x + e\right )\right )^{\frac {3}{2}}}{\left (d \sec \left (f x + e\right )\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((b*tan(f*x+e))^(3/2)/(d*sec(f*x+e))^(7/2),x, algorithm="maxima")
 

Output:

integrate((b*tan(f*x + e))^(3/2)/(d*sec(f*x + e))^(7/2), x)
 

Giac [F]

\[ \int \frac {(b \tan (e+f x))^{3/2}}{(d \sec (e+f x))^{7/2}} \, dx=\int { \frac {\left (b \tan \left (f x + e\right )\right )^{\frac {3}{2}}}{\left (d \sec \left (f x + e\right )\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((b*tan(f*x+e))^(3/2)/(d*sec(f*x+e))^(7/2),x, algorithm="giac")
 

Output:

integrate((b*tan(f*x + e))^(3/2)/(d*sec(f*x + e))^(7/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(b \tan (e+f x))^{3/2}}{(d \sec (e+f x))^{7/2}} \, dx=\int \frac {{\left (b\,\mathrm {tan}\left (e+f\,x\right )\right )}^{3/2}}{{\left (\frac {d}{\cos \left (e+f\,x\right )}\right )}^{7/2}} \,d x \] Input:

int((b*tan(e + f*x))^(3/2)/(d/cos(e + f*x))^(7/2),x)
 

Output:

int((b*tan(e + f*x))^(3/2)/(d/cos(e + f*x))^(7/2), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {(b \tan (e+f x))^{3/2}}{(d \sec (e+f x))^{7/2}} \, dx=\frac {\sqrt {d}\, \sqrt {b}\, \left (\int \frac {\sqrt {\tan \left (f x +e \right )}\, \sqrt {\sec \left (f x +e \right )}\, \tan \left (f x +e \right )}{\sec \left (f x +e \right )^{4}}d x \right ) b}{d^{4}} \] Input:

int((b*tan(f*x+e))^(3/2)/(d*sec(f*x+e))^(7/2),x)
 

Output:

(sqrt(d)*sqrt(b)*int((sqrt(tan(e + f*x))*sqrt(sec(e + f*x))*tan(e + f*x))/ 
sec(e + f*x)**4,x)*b)/d**4