\(\int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{5/2}} \, dx\) [207]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 111 \[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{5/2}} \, dx=\frac {6 i a^3}{5 d e^2 \sqrt {e \sec (c+d x)}}-\frac {6 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d e^2 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}-\frac {4 i a (a+i a \tan (c+d x))^2}{5 d (e \sec (c+d x))^{5/2}} \] Output:

6/5*I*a^3/d/e^2/(e*sec(d*x+c))^(1/2)-6/5*a^3*EllipticE(sin(1/2*d*x+1/2*c), 
2^(1/2))/d/e^2/cos(d*x+c)^(1/2)/(e*sec(d*x+c))^(1/2)-4/5*I*a*(a+I*a*tan(d* 
x+c))^2/d/(e*sec(d*x+c))^(5/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.26 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.97 \[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{5/2}} \, dx=-\frac {4 i a^3 e^{2 i (c+d x)} \left (1+e^{2 i (c+d x)}-\sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right )}{5 d e^2 \left (1+e^{2 i (c+d x)}\right ) \sqrt {e \sec (c+d x)}} \] Input:

Integrate[(a + I*a*Tan[c + d*x])^3/(e*Sec[c + d*x])^(5/2),x]
 

Output:

(((-4*I)/5)*a^3*E^((2*I)*(c + d*x))*(1 + E^((2*I)*(c + d*x)) - Sqrt[1 + E^ 
((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))]) 
)/(d*e^2*(1 + E^((2*I)*(c + d*x)))*Sqrt[e*Sec[c + d*x]])
 

Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.97, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3042, 3977, 3042, 3967, 3042, 4258, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 3977

\(\displaystyle -\frac {3 a^2 \int \frac {i \tan (c+d x) a+a}{\sqrt {e \sec (c+d x)}}dx}{5 e^2}-\frac {4 i a (a+i a \tan (c+d x))^2}{5 d (e \sec (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {3 a^2 \int \frac {i \tan (c+d x) a+a}{\sqrt {e \sec (c+d x)}}dx}{5 e^2}-\frac {4 i a (a+i a \tan (c+d x))^2}{5 d (e \sec (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3967

\(\displaystyle -\frac {3 a^2 \left (a \int \frac {1}{\sqrt {e \sec (c+d x)}}dx-\frac {2 i a}{d \sqrt {e \sec (c+d x)}}\right )}{5 e^2}-\frac {4 i a (a+i a \tan (c+d x))^2}{5 d (e \sec (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {3 a^2 \left (a \int \frac {1}{\sqrt {e \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 i a}{d \sqrt {e \sec (c+d x)}}\right )}{5 e^2}-\frac {4 i a (a+i a \tan (c+d x))^2}{5 d (e \sec (c+d x))^{5/2}}\)

\(\Big \downarrow \) 4258

\(\displaystyle -\frac {3 a^2 \left (\frac {a \int \sqrt {\cos (c+d x)}dx}{\sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}-\frac {2 i a}{d \sqrt {e \sec (c+d x)}}\right )}{5 e^2}-\frac {4 i a (a+i a \tan (c+d x))^2}{5 d (e \sec (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {3 a^2 \left (\frac {a \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{\sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}-\frac {2 i a}{d \sqrt {e \sec (c+d x)}}\right )}{5 e^2}-\frac {4 i a (a+i a \tan (c+d x))^2}{5 d (e \sec (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {3 a^2 \left (\frac {2 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}-\frac {2 i a}{d \sqrt {e \sec (c+d x)}}\right )}{5 e^2}-\frac {4 i a (a+i a \tan (c+d x))^2}{5 d (e \sec (c+d x))^{5/2}}\)

Input:

Int[(a + I*a*Tan[c + d*x])^3/(e*Sec[c + d*x])^(5/2),x]
 

Output:

(-3*a^2*(((-2*I)*a)/(d*Sqrt[e*Sec[c + d*x]]) + (2*a*EllipticE[(c + d*x)/2, 
 2])/(d*Sqrt[Cos[c + d*x]]*Sqrt[e*Sec[c + d*x]])))/(5*e^2) - (((4*I)/5)*a* 
(a + I*a*Tan[c + d*x])^2)/(d*(e*Sec[c + d*x])^(5/2))
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3967
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*( 
x_)]), x_Symbol] :> Simp[b*((d*Sec[e + f*x])^m/(f*m)), x] + Simp[a   Int[(d 
*Sec[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, m}, x] && (IntegerQ[2*m] 
|| NeQ[a^2 + b^2, 0])
 

rule 3977
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x 
_)])^(n_), x_Symbol] :> Simp[2*b*(d*Sec[e + f*x])^m*((a + b*Tan[e + f*x])^( 
n - 1)/(f*m)), x] - Simp[b^2*((m + 2*n - 2)/(d^2*m))   Int[(d*Sec[e + f*x]) 
^(m + 2)*(a + b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, d, e, f}, x] 
&& EqQ[a^2 + b^2, 0] && GtQ[n, 1] && ((IGtQ[n/2, 0] && ILtQ[m - 1/2, 0]) || 
 (EqQ[n, 2] && LtQ[m, 0]) || (LeQ[m, -1] && GtQ[m + n, 0]) || (ILtQ[m, 0] & 
& LtQ[m/2 + n - 1, 0] && IntegerQ[n]) || (EqQ[n, 3/2] && EqQ[m, -2^(-1)])) 
&& IntegerQ[2*m]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 323 vs. \(2 (96 ) = 192\).

Time = 8.45 (sec) , antiderivative size = 324, normalized size of antiderivative = 2.92

method result size
risch \(-\frac {2 i \left ({\mathrm e}^{2 i \left (d x +c \right )}-3\right ) a^{3} \sqrt {2}}{5 d \,e^{2} \sqrt {\frac {e \,{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}}+\frac {3 i \left (-\frac {2 \left (e \,{\mathrm e}^{2 i \left (d x +c \right )}+e \right )}{e \sqrt {{\mathrm e}^{i \left (d x +c \right )} \left (e \,{\mathrm e}^{2 i \left (d x +c \right )}+e \right )}}+\frac {i \sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}\, \sqrt {2}\, \sqrt {i \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}\, \sqrt {i {\mathrm e}^{i \left (d x +c \right )}}\, \left (-2 i \operatorname {EllipticE}\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )+i \operatorname {EllipticF}\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )\right )}{\sqrt {e \,{\mathrm e}^{3 i \left (d x +c \right )}+e \,{\mathrm e}^{i \left (d x +c \right )}}}\right ) a^{3} \sqrt {2}\, \sqrt {e \,{\mathrm e}^{i \left (d x +c \right )} \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}}{5 d \,e^{2} \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) \sqrt {\frac {e \,{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}}\) \(324\)
default \(-\frac {a^{3} \left (5 i \ln \left (\frac {4 \cos \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}+4 \sqrt {-\frac {\cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}-2 \cos \left (d x +c \right )+2}{\cos \left (d x +c \right )+1}\right )-5 i \ln \left (\frac {2 \cos \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}+2 \sqrt {-\frac {\cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}-\cos \left (d x +c \right )+1}{\cos \left (d x +c \right )+1}\right )+i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}\, \operatorname {EllipticE}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \left (12 \cos \left (d x +c \right )+24+12 \sec \left (d x +c \right )\right )+i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}\, \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \left (-12 \cos \left (d x +c \right )-24-12 \sec \left (d x +c \right )\right )+\sin \left (d x +c \right ) \left (-16 \cos \left (d x +c \right )^{2}-16 \cos \left (d x +c \right )+12\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}+i \left (16 \cos \left (d x +c \right )^{3}+16 \cos \left (d x +c \right )^{2}-20 \cos \left (d x +c \right )-20\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}\right )}{10 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {e \sec \left (d x +c \right )}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}\, e^{2}}\) \(490\)
parts \(\frac {2 a^{3} \left (\sin \left (d x +c \right ) \left (\cos \left (d x +c \right )^{2}+\cos \left (d x +c \right )+3\right )-3 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\cos \left (d x +c \right )+2+\sec \left (d x +c \right )\right ) \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+3 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \left (\cos \left (d x +c \right )+2+\sec \left (d x +c \right )\right )\right )}{5 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {e \sec \left (d x +c \right )}\, e^{2}}-\frac {i a^{3} \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}\, \ln \left (\frac {2 \cos \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}+2 \sqrt {-\frac {\cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}-\cos \left (d x +c \right )+1}{\cos \left (d x +c \right )+1}\right ) \left (-5-5 \sec \left (d x +c \right )\right )+\sqrt {-\frac {\cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}\, \ln \left (\frac {4 \cos \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}+4 \sqrt {-\frac {\cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}-2 \cos \left (d x +c \right )+2}{\cos \left (d x +c \right )+1}\right ) \left (5+5 \sec \left (d x +c \right )\right )+4 \cos \left (d x +c \right )^{2}-20\right )}{10 d \,e^{2} \sqrt {e \sec \left (d x +c \right )}}-\frac {6 i a^{3}}{5 d \left (e \sec \left (d x +c \right )\right )^{\frac {5}{2}}}-\frac {6 a^{3} \left (\sin \left (d x +c \right ) \left (-\cos \left (d x +c \right )^{2}-\cos \left (d x +c \right )+2\right )-2 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\cos \left (d x +c \right )+2+\sec \left (d x +c \right )\right ) \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+2 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \left (\cos \left (d x +c \right )+2+\sec \left (d x +c \right )\right )\right )}{5 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {e \sec \left (d x +c \right )}\, e^{2}}\) \(652\)

Input:

int((a+I*a*tan(d*x+c))^3/(e*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 

Output:

-2/5*I*(exp(I*(d*x+c))^2-3)/d*a^3*2^(1/2)/e^2/(e*exp(I*(d*x+c))/(exp(I*(d* 
x+c))^2+1))^(1/2)+3/5*I/d*(-2*(e*exp(I*(d*x+c))^2+e)/e/(exp(I*(d*x+c))*(e* 
exp(I*(d*x+c))^2+e))^(1/2)+I*(-I*(exp(I*(d*x+c))+I))^(1/2)*2^(1/2)*(I*(exp 
(I*(d*x+c))-I))^(1/2)*(I*exp(I*(d*x+c)))^(1/2)/(e*exp(I*(d*x+c))^3+e*exp(I 
*(d*x+c)))^(1/2)*(-2*I*EllipticE((-I*(exp(I*(d*x+c))+I))^(1/2),1/2*2^(1/2) 
)+I*EllipticF((-I*(exp(I*(d*x+c))+I))^(1/2),1/2*2^(1/2))))*a^3*2^(1/2)/e^2 
/(exp(I*(d*x+c))^2+1)/(e*exp(I*(d*x+c))/(exp(I*(d*x+c))^2+1))^(1/2)*(e*exp 
(I*(d*x+c))*(exp(I*(d*x+c))^2+1))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.85 \[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{5/2}} \, dx=-\frac {2 \, {\left (3 i \, \sqrt {2} a^{3} \sqrt {e} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, e^{\left (i \, d x + i \, c\right )}\right )\right ) + \sqrt {2} {\left (i \, a^{3} e^{\left (3 i \, d x + 3 i \, c\right )} + i \, a^{3} e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}\right )}}{5 \, d e^{3}} \] Input:

integrate((a+I*a*tan(d*x+c))^3/(e*sec(d*x+c))^(5/2),x, algorithm="fricas")
 

Output:

-2/5*(3*I*sqrt(2)*a^3*sqrt(e)*weierstrassZeta(-4, 0, weierstrassPInverse(- 
4, 0, e^(I*d*x + I*c))) + sqrt(2)*(I*a^3*e^(3*I*d*x + 3*I*c) + I*a^3*e^(I* 
d*x + I*c))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c))/(d* 
e^3)
 

Sympy [F]

\[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{5/2}} \, dx=- i a^{3} \left (\int \frac {i}{\left (e \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx + \int \left (- \frac {3 \tan {\left (c + d x \right )}}{\left (e \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\right )\, dx + \int \frac {\tan ^{3}{\left (c + d x \right )}}{\left (e \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx + \int \left (- \frac {3 i \tan ^{2}{\left (c + d x \right )}}{\left (e \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\right )\, dx\right ) \] Input:

integrate((a+I*a*tan(d*x+c))**3/(e*sec(d*x+c))**(5/2),x)
 

Output:

-I*a**3*(Integral(I/(e*sec(c + d*x))**(5/2), x) + Integral(-3*tan(c + d*x) 
/(e*sec(c + d*x))**(5/2), x) + Integral(tan(c + d*x)**3/(e*sec(c + d*x))** 
(5/2), x) + Integral(-3*I*tan(c + d*x)**2/(e*sec(c + d*x))**(5/2), x))
 

Maxima [F]

\[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{5/2}} \, dx=\int { \frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3}}{\left (e \sec \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate((a+I*a*tan(d*x+c))^3/(e*sec(d*x+c))^(5/2),x, algorithm="maxima")
 

Output:

integrate((I*a*tan(d*x + c) + a)^3/(e*sec(d*x + c))^(5/2), x)
 

Giac [F]

\[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{5/2}} \, dx=\int { \frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3}}{\left (e \sec \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate((a+I*a*tan(d*x+c))^3/(e*sec(d*x+c))^(5/2),x, algorithm="giac")
 

Output:

integrate((I*a*tan(d*x + c) + a)^3/(e*sec(d*x + c))^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{5/2}} \, dx=\int \frac {{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^3}{{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \] Input:

int((a + a*tan(c + d*x)*1i)^3/(e/cos(c + d*x))^(5/2),x)
 

Output:

int((a + a*tan(c + d*x)*1i)^3/(e/cos(c + d*x))^(5/2), x)
 

Reduce [F]

\[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{5/2}} \, dx=\frac {\sqrt {e}\, a^{3} \left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )^{3}}d x -\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \tan \left (d x +c \right )^{3}}{\sec \left (d x +c \right )^{3}}d x \right ) i -3 \left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \tan \left (d x +c \right )^{2}}{\sec \left (d x +c \right )^{3}}d x \right )+3 \left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \tan \left (d x +c \right )}{\sec \left (d x +c \right )^{3}}d x \right ) i \right )}{e^{3}} \] Input:

int((a+I*a*tan(d*x+c))^3/(e*sec(d*x+c))^(5/2),x)
 

Output:

(sqrt(e)*a**3*(int(sqrt(sec(c + d*x))/sec(c + d*x)**3,x) - int((sqrt(sec(c 
 + d*x))*tan(c + d*x)**3)/sec(c + d*x)**3,x)*i - 3*int((sqrt(sec(c + d*x)) 
*tan(c + d*x)**2)/sec(c + d*x)**3,x) + 3*int((sqrt(sec(c + d*x))*tan(c + d 
*x))/sec(c + d*x)**3,x)*i))/e**3