\(\int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{13/2}} \, dx\) [211]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 155 \[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{13/2}} \, dx=\frac {14 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{39 d e^6 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {14 a^3 \sin (c+d x)}{117 d e^5 (e \sec (c+d x))^{3/2}}-\frac {2 i (a+i a \tan (c+d x))^3}{13 d (e \sec (c+d x))^{13/2}}-\frac {28 i \left (a^3+i a^3 \tan (c+d x)\right )}{117 d e^2 (e \sec (c+d x))^{9/2}} \] Output:

14/39*a^3*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d/e^6/cos(d*x+c)^(1/2)/(e* 
sec(d*x+c))^(1/2)+14/117*a^3*sin(d*x+c)/d/e^5/(e*sec(d*x+c))^(3/2)-2/13*I* 
(a+I*a*tan(d*x+c))^3/d/(e*sec(d*x+c))^(13/2)-28/117*I*(a^3+I*a^3*tan(d*x+c 
))/d/e^2/(e*sec(d*x+c))^(9/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 4.17 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.94 \[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{13/2}} \, dx=\frac {a^3 \sqrt {e \sec (c+d x)} (-i \cos (3 (c+d x))+\sin (3 (c+d x))) \left (62+8 \cos (2 (c+d x))-54 \cos (4 (c+d x))+56 e^{-2 i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )+42 i \sin (2 (c+d x))+63 i \sin (4 (c+d x))\right )}{468 d e^7} \] Input:

Integrate[(a + I*a*Tan[c + d*x])^3/(e*Sec[c + d*x])^(13/2),x]
 

Output:

(a^3*Sqrt[e*Sec[c + d*x]]*((-I)*Cos[3*(c + d*x)] + Sin[3*(c + d*x)])*(62 + 
 8*Cos[2*(c + d*x)] - 54*Cos[4*(c + d*x)] + (56*Sqrt[1 + E^((2*I)*(c + d*x 
))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])/E^((2*I)*(c + 
d*x)) + (42*I)*Sin[2*(c + d*x)] + (63*I)*Sin[4*(c + d*x)]))/(468*d*e^7)
 

Rubi [A] (verified)

Time = 0.77 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.07, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.357, Rules used = {3042, 3978, 3042, 3977, 3042, 4256, 3042, 4258, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{13/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{13/2}}dx\)

\(\Big \downarrow \) 3978

\(\displaystyle \frac {7 a \int \frac {(i \tan (c+d x) a+a)^2}{(e \sec (c+d x))^{9/2}}dx}{13 e^2}-\frac {2 i (a+i a \tan (c+d x))^3}{13 d (e \sec (c+d x))^{13/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 a \int \frac {(i \tan (c+d x) a+a)^2}{(e \sec (c+d x))^{9/2}}dx}{13 e^2}-\frac {2 i (a+i a \tan (c+d x))^3}{13 d (e \sec (c+d x))^{13/2}}\)

\(\Big \downarrow \) 3977

\(\displaystyle \frac {7 a \left (\frac {5 a^2 \int \frac {1}{(e \sec (c+d x))^{5/2}}dx}{9 e^2}-\frac {4 i \left (a^2+i a^2 \tan (c+d x)\right )}{9 d (e \sec (c+d x))^{9/2}}\right )}{13 e^2}-\frac {2 i (a+i a \tan (c+d x))^3}{13 d (e \sec (c+d x))^{13/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 a \left (\frac {5 a^2 \int \frac {1}{\left (e \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx}{9 e^2}-\frac {4 i \left (a^2+i a^2 \tan (c+d x)\right )}{9 d (e \sec (c+d x))^{9/2}}\right )}{13 e^2}-\frac {2 i (a+i a \tan (c+d x))^3}{13 d (e \sec (c+d x))^{13/2}}\)

\(\Big \downarrow \) 4256

\(\displaystyle \frac {7 a \left (\frac {5 a^2 \left (\frac {3 \int \frac {1}{\sqrt {e \sec (c+d x)}}dx}{5 e^2}+\frac {2 \sin (c+d x)}{5 d e (e \sec (c+d x))^{3/2}}\right )}{9 e^2}-\frac {4 i \left (a^2+i a^2 \tan (c+d x)\right )}{9 d (e \sec (c+d x))^{9/2}}\right )}{13 e^2}-\frac {2 i (a+i a \tan (c+d x))^3}{13 d (e \sec (c+d x))^{13/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 a \left (\frac {5 a^2 \left (\frac {3 \int \frac {1}{\sqrt {e \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{5 e^2}+\frac {2 \sin (c+d x)}{5 d e (e \sec (c+d x))^{3/2}}\right )}{9 e^2}-\frac {4 i \left (a^2+i a^2 \tan (c+d x)\right )}{9 d (e \sec (c+d x))^{9/2}}\right )}{13 e^2}-\frac {2 i (a+i a \tan (c+d x))^3}{13 d (e \sec (c+d x))^{13/2}}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {7 a \left (\frac {5 a^2 \left (\frac {3 \int \sqrt {\cos (c+d x)}dx}{5 e^2 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {2 \sin (c+d x)}{5 d e (e \sec (c+d x))^{3/2}}\right )}{9 e^2}-\frac {4 i \left (a^2+i a^2 \tan (c+d x)\right )}{9 d (e \sec (c+d x))^{9/2}}\right )}{13 e^2}-\frac {2 i (a+i a \tan (c+d x))^3}{13 d (e \sec (c+d x))^{13/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 a \left (\frac {5 a^2 \left (\frac {3 \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{5 e^2 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {2 \sin (c+d x)}{5 d e (e \sec (c+d x))^{3/2}}\right )}{9 e^2}-\frac {4 i \left (a^2+i a^2 \tan (c+d x)\right )}{9 d (e \sec (c+d x))^{9/2}}\right )}{13 e^2}-\frac {2 i (a+i a \tan (c+d x))^3}{13 d (e \sec (c+d x))^{13/2}}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {7 a \left (\frac {5 a^2 \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d e^2 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {2 \sin (c+d x)}{5 d e (e \sec (c+d x))^{3/2}}\right )}{9 e^2}-\frac {4 i \left (a^2+i a^2 \tan (c+d x)\right )}{9 d (e \sec (c+d x))^{9/2}}\right )}{13 e^2}-\frac {2 i (a+i a \tan (c+d x))^3}{13 d (e \sec (c+d x))^{13/2}}\)

Input:

Int[(a + I*a*Tan[c + d*x])^3/(e*Sec[c + d*x])^(13/2),x]
 

Output:

(((-2*I)/13)*(a + I*a*Tan[c + d*x])^3)/(d*(e*Sec[c + d*x])^(13/2)) + (7*a* 
((5*a^2*((6*EllipticE[(c + d*x)/2, 2])/(5*d*e^2*Sqrt[Cos[c + d*x]]*Sqrt[e* 
Sec[c + d*x]]) + (2*Sin[c + d*x])/(5*d*e*(e*Sec[c + d*x])^(3/2))))/(9*e^2) 
 - (((4*I)/9)*(a^2 + I*a^2*Tan[c + d*x]))/(d*(e*Sec[c + d*x])^(9/2))))/(13 
*e^2)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3977
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x 
_)])^(n_), x_Symbol] :> Simp[2*b*(d*Sec[e + f*x])^m*((a + b*Tan[e + f*x])^( 
n - 1)/(f*m)), x] - Simp[b^2*((m + 2*n - 2)/(d^2*m))   Int[(d*Sec[e + f*x]) 
^(m + 2)*(a + b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, d, e, f}, x] 
&& EqQ[a^2 + b^2, 0] && GtQ[n, 1] && ((IGtQ[n/2, 0] && ILtQ[m - 1/2, 0]) || 
 (EqQ[n, 2] && LtQ[m, 0]) || (LeQ[m, -1] && GtQ[m + n, 0]) || (ILtQ[m, 0] & 
& LtQ[m/2 + n - 1, 0] && IntegerQ[n]) || (EqQ[n, 3/2] && EqQ[m, -2^(-1)])) 
&& IntegerQ[2*m]
 

rule 3978
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x 
_)])^(n_), x_Symbol] :> Simp[b*(d*Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/( 
a*f*m)), x] + Simp[a*((m + n)/(m*d^2))   Int[(d*Sec[e + f*x])^(m + 2)*(a + 
b*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b 
^2, 0] && GtQ[n, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n]
 

rule 4256
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Csc[c + d*x])^(n + 1)/(b*d*n)), x] + Simp[(n + 1)/(b^2*n)   Int[(b*Csc[c 
+ d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && IntegerQ[2* 
n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 281 vs. \(2 (135 ) = 270\).

Time = 30.82 (sec) , antiderivative size = 282, normalized size of antiderivative = 1.82

method result size
default \(-\frac {2 a^{3} \left (\sin \left (d x +c \right ) \left (-36 \cos \left (d x +c \right )^{6}-36 \cos \left (d x +c \right )^{5}-5 \cos \left (d x +c \right )^{4}-5 \cos \left (d x +c \right )^{3}-7 \cos \left (d x +c \right )^{2}-7 \cos \left (d x +c \right )-21\right )-21 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \left (\cos \left (d x +c \right )+2+\sec \left (d x +c \right )\right )+21 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\cos \left (d x +c \right )+2+\sec \left (d x +c \right )\right ) \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+i \left (36 \cos \left (d x +c \right )^{7}+36 \cos \left (d x +c \right )^{6}-13 \cos \left (d x +c \right )^{5}-13 \cos \left (d x +c \right )^{4}\right )\right )}{117 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {e \sec \left (d x +c \right )}\, e^{6}}\) \(282\)
risch \(-\frac {i \left (9 \,{\mathrm e}^{6 i \left (d x +c \right )}+41 \,{\mathrm e}^{4 i \left (d x +c \right )}+83 \,{\mathrm e}^{2 i \left (d x +c \right )}+219\right ) a^{3} \sqrt {2}}{936 d \,e^{6} \sqrt {\frac {e \,{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}}-\frac {7 i \left (-\frac {2 \left (e \,{\mathrm e}^{2 i \left (d x +c \right )}+e \right )}{e \sqrt {{\mathrm e}^{i \left (d x +c \right )} \left (e \,{\mathrm e}^{2 i \left (d x +c \right )}+e \right )}}+\frac {i \sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}\, \sqrt {2}\, \sqrt {i \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}\, \sqrt {i {\mathrm e}^{i \left (d x +c \right )}}\, \left (-2 i \operatorname {EllipticE}\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )+i \operatorname {EllipticF}\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )\right )}{\sqrt {e \,{\mathrm e}^{3 i \left (d x +c \right )}+e \,{\mathrm e}^{i \left (d x +c \right )}}}\right ) a^{3} \sqrt {2}\, \sqrt {e \,{\mathrm e}^{i \left (d x +c \right )} \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}}{39 d \,e^{6} \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) \sqrt {\frac {e \,{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}}\) \(352\)
parts \(\frac {2 a^{3} \left (\sin \left (d x +c \right ) \left (45 \cos \left (d x +c \right )^{6}+45 \cos \left (d x +c \right )^{5}+55 \cos \left (d x +c \right )^{4}+55 \cos \left (d x +c \right )^{3}+77 \cos \left (d x +c \right )^{2}+77 \cos \left (d x +c \right )+231\right )-231 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\cos \left (d x +c \right )+2+\sec \left (d x +c \right )\right ) \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+231 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \left (\cos \left (d x +c \right )+2+\sec \left (d x +c \right )\right )\right )}{585 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {e \sec \left (d x +c \right )}\, e^{6}}-\frac {i a^{3} \left (\frac {2 \cos \left (d x +c \right )^{6}}{13}-\frac {2 \cos \left (d x +c \right )^{4}}{9}\right )}{d \,e^{6} \sqrt {e \sec \left (d x +c \right )}}-\frac {6 i a^{3}}{13 d \left (e \sec \left (d x +c \right )\right )^{\frac {13}{2}}}-\frac {2 a^{3} \left (\sin \left (d x +c \right ) \left (-45 \cos \left (d x +c \right )^{6}-45 \cos \left (d x +c \right )^{5}+10 \cos \left (d x +c \right )^{4}+10 \cos \left (d x +c \right )^{3}+14 \cos \left (d x +c \right )^{2}+14 \cos \left (d x +c \right )+42\right )+42 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \left (\cos \left (d x +c \right )+2+\sec \left (d x +c \right )\right )-42 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\cos \left (d x +c \right )+2+\sec \left (d x +c \right )\right ) \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )\right )}{195 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {e \sec \left (d x +c \right )}\, e^{6}}\) \(538\)

Input:

int((a+I*a*tan(d*x+c))^3/(e*sec(d*x+c))^(13/2),x,method=_RETURNVERBOSE)
 

Output:

-2/117*a^3/d/(cos(d*x+c)+1)/(e*sec(d*x+c))^(1/2)/e^6*(sin(d*x+c)*(-36*cos( 
d*x+c)^6-36*cos(d*x+c)^5-5*cos(d*x+c)^4-5*cos(d*x+c)^3-7*cos(d*x+c)^2-7*co 
s(d*x+c)-21)-21*I*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/ 
2)*(cos(d*x+c)+2+sec(d*x+c))*EllipticE(I*(csc(d*x+c)-cot(d*x+c)),I)+21*I*( 
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+2+se 
c(d*x+c))*EllipticF(I*(csc(d*x+c)-cot(d*x+c)),I)+I*(36*cos(d*x+c)^7+36*cos 
(d*x+c)^6-13*cos(d*x+c)^5-13*cos(d*x+c)^4))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.94 \[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{13/2}} \, dx=\frac {{\left (336 i \, \sqrt {2} a^{3} \sqrt {e} e^{\left (i \, d x + i \, c\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, e^{\left (i \, d x + i \, c\right )}\right )\right ) + \sqrt {2} {\left (-9 i \, a^{3} e^{\left (8 i \, d x + 8 i \, c\right )} - 50 i \, a^{3} e^{\left (6 i \, d x + 6 i \, c\right )} - 124 i \, a^{3} e^{\left (4 i \, d x + 4 i \, c\right )} + 34 i \, a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + 117 i \, a^{3}\right )} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{936 \, d e^{7}} \] Input:

integrate((a+I*a*tan(d*x+c))^3/(e*sec(d*x+c))^(13/2),x, algorithm="fricas" 
)
 

Output:

1/936*(336*I*sqrt(2)*a^3*sqrt(e)*e^(I*d*x + I*c)*weierstrassZeta(-4, 0, we 
ierstrassPInverse(-4, 0, e^(I*d*x + I*c))) + sqrt(2)*(-9*I*a^3*e^(8*I*d*x 
+ 8*I*c) - 50*I*a^3*e^(6*I*d*x + 6*I*c) - 124*I*a^3*e^(4*I*d*x + 4*I*c) + 
34*I*a^3*e^(2*I*d*x + 2*I*c) + 117*I*a^3)*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1) 
)*e^(1/2*I*d*x + 1/2*I*c))*e^(-I*d*x - I*c)/(d*e^7)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{13/2}} \, dx=\text {Timed out} \] Input:

integrate((a+I*a*tan(d*x+c))**3/(e*sec(d*x+c))**(13/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{13/2}} \, dx=\int { \frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3}}{\left (e \sec \left (d x + c\right )\right )^{\frac {13}{2}}} \,d x } \] Input:

integrate((a+I*a*tan(d*x+c))^3/(e*sec(d*x+c))^(13/2),x, algorithm="maxima" 
)
                                                                                    
                                                                                    
 

Output:

integrate((I*a*tan(d*x + c) + a)^3/(e*sec(d*x + c))^(13/2), x)
 

Giac [F]

\[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{13/2}} \, dx=\int { \frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3}}{\left (e \sec \left (d x + c\right )\right )^{\frac {13}{2}}} \,d x } \] Input:

integrate((a+I*a*tan(d*x+c))^3/(e*sec(d*x+c))^(13/2),x, algorithm="giac")
 

Output:

integrate((I*a*tan(d*x + c) + a)^3/(e*sec(d*x + c))^(13/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{13/2}} \, dx=\int \frac {{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^3}{{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{13/2}} \,d x \] Input:

int((a + a*tan(c + d*x)*1i)^3/(e/cos(c + d*x))^(13/2),x)
 

Output:

int((a + a*tan(c + d*x)*1i)^3/(e/cos(c + d*x))^(13/2), x)
 

Reduce [F]

\[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{13/2}} \, dx=\frac {\sqrt {e}\, a^{3} \left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )^{7}}d x -\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \tan \left (d x +c \right )^{3}}{\sec \left (d x +c \right )^{7}}d x \right ) i -3 \left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \tan \left (d x +c \right )^{2}}{\sec \left (d x +c \right )^{7}}d x \right )+3 \left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \tan \left (d x +c \right )}{\sec \left (d x +c \right )^{7}}d x \right ) i \right )}{e^{7}} \] Input:

int((a+I*a*tan(d*x+c))^3/(e*sec(d*x+c))^(13/2),x)
 

Output:

(sqrt(e)*a**3*(int(sqrt(sec(c + d*x))/sec(c + d*x)**7,x) - int((sqrt(sec(c 
 + d*x))*tan(c + d*x)**3)/sec(c + d*x)**7,x)*i - 3*int((sqrt(sec(c + d*x)) 
*tan(c + d*x)**2)/sec(c + d*x)**7,x) + 3*int((sqrt(sec(c + d*x))*tan(c + d 
*x))/sec(c + d*x)**7,x)*i))/e**7