\(\int \cos ^4(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx\) [284]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 197 \[ \int \cos ^4(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=-\frac {35 i \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{64 \sqrt {2} d}+\frac {35 i a^2}{96 d (a+i a \tan (c+d x))^{3/2}}-\frac {i a^4}{4 d (a-i a \tan (c+d x))^2 (a+i a \tan (c+d x))^{3/2}}+\frac {35 i a}{64 d \sqrt {a+i a \tan (c+d x)}}-\frac {7 i a^5}{16 d (a+i a \tan (c+d x))^{3/2} \left (a^3-i a^3 \tan (c+d x)\right )} \] Output:

-35/128*I*a^(1/2)*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*2^ 
(1/2)/d+35/96*I*a^2/d/(a+I*a*tan(d*x+c))^(3/2)-1/4*I*a^4/d/(a-I*a*tan(d*x+ 
c))^2/(a+I*a*tan(d*x+c))^(3/2)+35/64*I*a/d/(a+I*a*tan(d*x+c))^(1/2)-7/16*I 
*a^5/d/(a+I*a*tan(d*x+c))^(3/2)/(a^3-I*a^3*tan(d*x+c))
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.11 (sec) , antiderivative size = 53, normalized size of antiderivative = 0.27 \[ \int \cos ^4(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\frac {i a^2 \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},3,-\frac {1}{2},\frac {1}{2} (1+i \tan (c+d x))\right )}{12 d (a+i a \tan (c+d x))^{3/2}} \] Input:

Integrate[Cos[c + d*x]^4*Sqrt[a + I*a*Tan[c + d*x]],x]
 

Output:

((I/12)*a^2*Hypergeometric2F1[-3/2, 3, -1/2, (1 + I*Tan[c + d*x])/2])/(d*( 
a + I*a*Tan[c + d*x])^(3/2))
 

Rubi [A] (warning: unable to verify)

Time = 0.32 (sec) , antiderivative size = 191, normalized size of antiderivative = 0.97, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {3042, 3968, 52, 52, 61, 61, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^4(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sec (c+d x)^4}dx\)

\(\Big \downarrow \) 3968

\(\displaystyle -\frac {i a^5 \int \frac {1}{(a-i a \tan (c+d x))^3 (i \tan (c+d x) a+a)^{5/2}}d(i a \tan (c+d x))}{d}\)

\(\Big \downarrow \) 52

\(\displaystyle -\frac {i a^5 \left (\frac {7 \int \frac {1}{(a-i a \tan (c+d x))^2 (i \tan (c+d x) a+a)^{5/2}}d(i a \tan (c+d x))}{8 a}+\frac {1}{4 a (a-i a \tan (c+d x))^2 (a+i a \tan (c+d x))^{3/2}}\right )}{d}\)

\(\Big \downarrow \) 52

\(\displaystyle -\frac {i a^5 \left (\frac {7 \left (\frac {5 \int \frac {1}{(a-i a \tan (c+d x)) (i \tan (c+d x) a+a)^{5/2}}d(i a \tan (c+d x))}{4 a}+\frac {1}{2 a (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{3/2}}\right )}{8 a}+\frac {1}{4 a (a-i a \tan (c+d x))^2 (a+i a \tan (c+d x))^{3/2}}\right )}{d}\)

\(\Big \downarrow \) 61

\(\displaystyle -\frac {i a^5 \left (\frac {7 \left (\frac {5 \left (\frac {\int \frac {1}{(a-i a \tan (c+d x)) (i \tan (c+d x) a+a)^{3/2}}d(i a \tan (c+d x))}{2 a}-\frac {1}{3 a (a+i a \tan (c+d x))^{3/2}}\right )}{4 a}+\frac {1}{2 a (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{3/2}}\right )}{8 a}+\frac {1}{4 a (a-i a \tan (c+d x))^2 (a+i a \tan (c+d x))^{3/2}}\right )}{d}\)

\(\Big \downarrow \) 61

\(\displaystyle -\frac {i a^5 \left (\frac {7 \left (\frac {5 \left (\frac {\frac {\int \frac {1}{(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}d(i a \tan (c+d x))}{2 a}-\frac {1}{a \sqrt {a+i a \tan (c+d x)}}}{2 a}-\frac {1}{3 a (a+i a \tan (c+d x))^{3/2}}\right )}{4 a}+\frac {1}{2 a (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{3/2}}\right )}{8 a}+\frac {1}{4 a (a-i a \tan (c+d x))^2 (a+i a \tan (c+d x))^{3/2}}\right )}{d}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {i a^5 \left (\frac {7 \left (\frac {5 \left (\frac {\frac {\int \frac {1}{a^2 \tan ^2(c+d x)+2 a}d\sqrt {i \tan (c+d x) a+a}}{a}-\frac {1}{a \sqrt {a+i a \tan (c+d x)}}}{2 a}-\frac {1}{3 a (a+i a \tan (c+d x))^{3/2}}\right )}{4 a}+\frac {1}{2 a (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{3/2}}\right )}{8 a}+\frac {1}{4 a (a-i a \tan (c+d x))^2 (a+i a \tan (c+d x))^{3/2}}\right )}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {i a^5 \left (\frac {7 \left (\frac {5 \left (\frac {\frac {i \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2}}\right )}{\sqrt {2} a^{3/2}}-\frac {1}{a \sqrt {a+i a \tan (c+d x)}}}{2 a}-\frac {1}{3 a (a+i a \tan (c+d x))^{3/2}}\right )}{4 a}+\frac {1}{2 a (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{3/2}}\right )}{8 a}+\frac {1}{4 a (a-i a \tan (c+d x))^2 (a+i a \tan (c+d x))^{3/2}}\right )}{d}\)

Input:

Int[Cos[c + d*x]^4*Sqrt[a + I*a*Tan[c + d*x]],x]
 

Output:

((-I)*a^5*(1/(4*a*(a - I*a*Tan[c + d*x])^2*(a + I*a*Tan[c + d*x])^(3/2)) + 
 (7*(1/(2*a*(a - I*a*Tan[c + d*x])*(a + I*a*Tan[c + d*x])^(3/2)) + (5*(-1/ 
3*1/(a*(a + I*a*Tan[c + d*x])^(3/2)) + ((I*ArcTan[(Sqrt[a]*Tan[c + d*x])/S 
qrt[2]])/(Sqrt[2]*a^(3/2)) - 1/(a*Sqrt[a + I*a*Tan[c + d*x]]))/(2*a)))/(4* 
a)))/(8*a)))/d
 

Defintions of rubi rules used

rule 52
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && ILtQ[m, -1] && FractionQ[n] && LtQ[n, 0]
 

rule 61
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0 
] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d 
, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3968
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_ 
), x_Symbol] :> Simp[1/(a^(m - 2)*b*f)   Subst[Int[(a - x)^(m/2 - 1)*(a + x 
)^(n + m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, e, f, n}, x] && 
 EqQ[a^2 + b^2, 0] && IntegerQ[m/2]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 350 vs. \(2 (158 ) = 316\).

Time = 4.24 (sec) , antiderivative size = 351, normalized size of antiderivative = 1.78

method result size
default \(\frac {\left (105 i \sin \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}{\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}}\right )+\left (-105 \cos \left (d x +c \right )-105\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}{\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}}\right )+i \left (105 \cos \left (d x +c \right )+105\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {2}}{2}\right )+105 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {2}}{2}\right ) \sin \left (d x +c \right )+\sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (112 \cos \left (d x +c \right )^{2}+210\right )+i \cos \left (d x +c \right )^{2} \left (16 \cos \left (d x +c \right )^{2}+70\right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}}{384 d}\) \(351\)

Input:

int(cos(d*x+c)^4*(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/384/d*(105*I*sin(d*x+c)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(2^(1/ 
2)*(cot(d*x+c)-csc(d*x+c))/(cot(d*x+c)^2-2*cot(d*x+c)*csc(d*x+c)+csc(d*x+c 
)^2-1)^(1/2))+(-105*cos(d*x+c)-105)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arc 
tanh(2^(1/2)*(cot(d*x+c)-csc(d*x+c))/(cot(d*x+c)^2-2*cot(d*x+c)*csc(d*x+c) 
+csc(d*x+c)^2-1)^(1/2))+I*(105*cos(d*x+c)+105)*(-cos(d*x+c)/(cos(d*x+c)+1) 
)^(1/2)*arctan(1/2*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*2^(1/2))+105*(-cos 
(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1 
/2)*2^(1/2))*sin(d*x+c)+sin(d*x+c)*cos(d*x+c)*(112*cos(d*x+c)^2+210)+I*cos 
(d*x+c)^2*(16*cos(d*x+c)^2+70))*(a*(1+I*tan(d*x+c)))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 275, normalized size of antiderivative = 1.40 \[ \int \cos ^4(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=-\frac {{\left (105 \, \sqrt {\frac {1}{2}} d \sqrt {-\frac {a}{d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (-4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (i \, d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {-\frac {a}{d^{2}}} - a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - 105 \, \sqrt {\frac {1}{2}} d \sqrt {-\frac {a}{d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (-4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (-i \, d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {-\frac {a}{d^{2}}} - a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-6 i \, e^{\left (8 i \, d x + 8 i \, c\right )} - 45 i \, e^{\left (6 i \, d x + 6 i \, c\right )} + 41 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 88 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 8 i\right )}\right )} e^{\left (-3 i \, d x - 3 i \, c\right )}}{384 \, d} \] Input:

integrate(cos(d*x+c)^4*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

-1/384*(105*sqrt(1/2)*d*sqrt(-a/d^2)*e^(3*I*d*x + 3*I*c)*log(-4*(sqrt(2)*s 
qrt(1/2)*(I*d*e^(2*I*d*x + 2*I*c) + I*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)) 
*sqrt(-a/d^2) - a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - 105*sqrt(1/2)*d*sqr 
t(-a/d^2)*e^(3*I*d*x + 3*I*c)*log(-4*(sqrt(2)*sqrt(1/2)*(-I*d*e^(2*I*d*x + 
 2*I*c) - I*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(-a/d^2) - a*e^(I*d*x 
 + I*c))*e^(-I*d*x - I*c)) - sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(-6 
*I*e^(8*I*d*x + 8*I*c) - 45*I*e^(6*I*d*x + 6*I*c) + 41*I*e^(4*I*d*x + 4*I* 
c) + 88*I*e^(2*I*d*x + 2*I*c) + 8*I))*e^(-3*I*d*x - 3*I*c)/d
 

Sympy [F]

\[ \int \cos ^4(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\int \sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \cos ^{4}{\left (c + d x \right )}\, dx \] Input:

integrate(cos(d*x+c)**4*(a+I*a*tan(d*x+c))**(1/2),x)
 

Output:

Integral(sqrt(I*a*(tan(c + d*x) - I))*cos(c + d*x)**4, x)
 

Maxima [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 176, normalized size of antiderivative = 0.89 \[ \int \cos ^4(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\frac {i \, {\left (105 \, \sqrt {2} a^{\frac {3}{2}} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {i \, a \tan \left (d x + c\right ) + a}}\right ) + \frac {4 \, {\left (105 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3} a^{2} - 350 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} a^{3} + 224 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a^{4} + 64 \, a^{5}\right )}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {7}{2}} - 4 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}} a + 4 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}} a^{2}}\right )}}{768 \, a d} \] Input:

integrate(cos(d*x+c)^4*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

1/768*I*(105*sqrt(2)*a^(3/2)*log(-(sqrt(2)*sqrt(a) - sqrt(I*a*tan(d*x + c) 
 + a))/(sqrt(2)*sqrt(a) + sqrt(I*a*tan(d*x + c) + a))) + 4*(105*(I*a*tan(d 
*x + c) + a)^3*a^2 - 350*(I*a*tan(d*x + c) + a)^2*a^3 + 224*(I*a*tan(d*x + 
 c) + a)*a^4 + 64*a^5)/((I*a*tan(d*x + c) + a)^(7/2) - 4*(I*a*tan(d*x + c) 
 + a)^(5/2)*a + 4*(I*a*tan(d*x + c) + a)^(3/2)*a^2))/(a*d)
 

Giac [F(-2)]

Exception generated. \[ \int \cos ^4(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(cos(d*x+c)^4*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeDone
 

Mupad [F(-1)]

Timed out. \[ \int \cos ^4(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\int {\cos \left (c+d\,x\right )}^4\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}} \,d x \] Input:

int(cos(c + d*x)^4*(a + a*tan(c + d*x)*1i)^(1/2),x)
 

Output:

int(cos(c + d*x)^4*(a + a*tan(c + d*x)*1i)^(1/2), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \cos ^4(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\sqrt {a}\, \left (\int \sqrt {\tan \left (d x +c \right ) i +1}\, \cos \left (d x +c \right )^{4}d x \right ) \] Input:

int(cos(d*x+c)^4*(a+I*a*tan(d*x+c))^(1/2),x)
 

Output:

sqrt(a)*int(sqrt(tan(c + d*x)*i + 1)*cos(c + d*x)**4,x)