\(\int \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx\) [304]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 122 \[ \int \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=\frac {i a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \sec (c+d x)}{\sqrt {2} \sqrt {a+i a \tan (c+d x)}}\right )}{2 \sqrt {2} d}-\frac {i a \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}-\frac {i \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d} \] Output:

1/4*I*a^(3/2)*arctanh(1/2*a^(1/2)*sec(d*x+c)*2^(1/2)/(a+I*a*tan(d*x+c))^(1 
/2))*2^(1/2)/d-1/2*I*a*cos(d*x+c)*(a+I*a*tan(d*x+c))^(1/2)/d-1/3*I*cos(d*x 
+c)^3*(a+I*a*tan(d*x+c))^(3/2)/d
 

Mathematica [A] (verified)

Time = 0.91 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.83 \[ \int \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=-\frac {i a e^{-i (c+d x)} \left (4+5 e^{2 i (c+d x)}+e^{4 i (c+d x)}-3 \sqrt {1+e^{2 i (c+d x)}} \text {arctanh}\left (\sqrt {1+e^{2 i (c+d x)}}\right )\right ) \sqrt {a+i a \tan (c+d x)}}{12 d} \] Input:

Integrate[Cos[c + d*x]^3*(a + I*a*Tan[c + d*x])^(3/2),x]
 

Output:

((-1/12*I)*a*(4 + 5*E^((2*I)*(c + d*x)) + E^((4*I)*(c + d*x)) - 3*Sqrt[1 + 
 E^((2*I)*(c + d*x))]*ArcTanh[Sqrt[1 + E^((2*I)*(c + d*x))]])*Sqrt[a + I*a 
*Tan[c + d*x]])/(d*E^(I*(c + d*x)))
 

Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.01, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {3042, 3971, 3042, 3971, 3042, 3970, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sec (c+d x)^3}dx\)

\(\Big \downarrow \) 3971

\(\displaystyle \frac {1}{2} a \int \cos (c+d x) \sqrt {i \tan (c+d x) a+a}dx-\frac {i \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} a \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sec (c+d x)}dx-\frac {i \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 3971

\(\displaystyle \frac {1}{2} a \left (\frac {1}{2} a \int \frac {\sec (c+d x)}{\sqrt {i \tan (c+d x) a+a}}dx-\frac {i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{d}\right )-\frac {i \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} a \left (\frac {1}{2} a \int \frac {\sec (c+d x)}{\sqrt {i \tan (c+d x) a+a}}dx-\frac {i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{d}\right )-\frac {i \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 3970

\(\displaystyle \frac {1}{2} a \left (\frac {i a \int \frac {1}{2-\frac {a \sec ^2(c+d x)}{i \tan (c+d x) a+a}}d\frac {\sec (c+d x)}{\sqrt {i \tan (c+d x) a+a}}}{d}-\frac {i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{d}\right )-\frac {i \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{2} a \left (\frac {i \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \sec (c+d x)}{\sqrt {2} \sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {2} d}-\frac {i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{d}\right )-\frac {i \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\)

Input:

Int[Cos[c + d*x]^3*(a + I*a*Tan[c + d*x])^(3/2),x]
 

Output:

((-1/3*I)*Cos[c + d*x]^3*(a + I*a*Tan[c + d*x])^(3/2))/d + (a*((I*Sqrt[a]* 
ArcTanh[(Sqrt[a]*Sec[c + d*x])/(Sqrt[2]*Sqrt[a + I*a*Tan[c + d*x]])])/(Sqr 
t[2]*d) - (I*Cos[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]])/d))/2
 

Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3970
Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_S 
ymbol] :> Simp[-2*(a/(b*f))   Subst[Int[1/(2 - a*x^2), x], x, Sec[e + f*x]/ 
Sqrt[a + b*Tan[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 + b^2, 0 
]
 

rule 3971
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*( 
x_)])^(n_), x_Symbol] :> Simp[b*(d*Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/ 
(a*f*m)), x] + Simp[a/(2*d^2)   Int[(d*Sec[e + f*x])^(m + 2)*(a + b*Tan[e + 
 f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && 
 EqQ[m/2 + n, 0] && GtQ[n, 0]
 
Maple [B] (warning: unable to verify)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 734 vs. \(2 (97 ) = 194\).

Time = 4.89 (sec) , antiderivative size = 735, normalized size of antiderivative = 6.02

method result size
default \(-\frac {\cos \left (d x +c \right ) \left (\operatorname {arctanh}\left (\frac {\left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ) \sqrt {2}}{\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (-6 \sin \left (d x +c \right )^{2}-3 \tan \left (d x +c \right ) \sin \left (d x +c \right )\right )+i \left (-6 \cos \left (d x +c \right )^{2}-3 \cos \left (d x +c \right )+3\right ) \tan \left (d x +c \right ) \operatorname {arctanh}\left (\frac {\left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ) \sqrt {2}}{\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+i \left (6 \cos \left (d x +c \right )+3\right ) \sin \left (d x +c \right ) \operatorname {arctanh}\left (\frac {\left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ) \sqrt {2}}{\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+\left (-6 \cos \left (d x +c \right )^{2}-3 \cos \left (d x +c \right )+3\right ) \operatorname {arctanh}\left (\frac {\left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ) \sqrt {2}}{\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+i \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {2}}{2}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (6 \sin \left (d x +c \right )^{2}+3 \tan \left (d x +c \right ) \sin \left (d x +c \right )\right )+\left (-6 \cos \left (d x +c \right )^{2}-3 \cos \left (d x +c \right )+3\right ) \tan \left (d x +c \right ) \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {2}}{2}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+\left (6 \cos \left (d x +c \right )+3\right ) \sin \left (d x +c \right ) \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {2}}{2}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+i \left (6 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )-3\right ) \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {2}}{2}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+6 i \sin \left (d x +c \right )^{2}+10 i \cos \left (d x +c \right )^{2}-4 \cos \left (d x +c \right ) \sin \left (d x +c \right )\right ) a \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}}{12 d}\) \(735\)

Input:

int(cos(d*x+c)^3*(a+I*a*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-1/12/d*cos(d*x+c)*(arctanh(1/(cot(d*x+c)^2-2*cot(d*x+c)*csc(d*x+c)+csc(d* 
x+c)^2-1)^(1/2)*(csc(d*x+c)-cot(d*x+c))*2^(1/2))*(-cos(d*x+c)/(cos(d*x+c)+ 
1))^(1/2)*(-6*sin(d*x+c)^2-3*tan(d*x+c)*sin(d*x+c))+I*(-6*cos(d*x+c)^2-3*c 
os(d*x+c)+3)*tan(d*x+c)*arctanh(1/(cot(d*x+c)^2-2*cot(d*x+c)*csc(d*x+c)+cs 
c(d*x+c)^2-1)^(1/2)*(csc(d*x+c)-cot(d*x+c))*2^(1/2))*(-cos(d*x+c)/(cos(d*x 
+c)+1))^(1/2)+I*(6*cos(d*x+c)+3)*sin(d*x+c)*arctanh(1/(cot(d*x+c)^2-2*cot( 
d*x+c)*csc(d*x+c)+csc(d*x+c)^2-1)^(1/2)*(csc(d*x+c)-cot(d*x+c))*2^(1/2))*( 
-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+(-6*cos(d*x+c)^2-3*cos(d*x+c)+3)*arctanh 
(1/(cot(d*x+c)^2-2*cot(d*x+c)*csc(d*x+c)+csc(d*x+c)^2-1)^(1/2)*(csc(d*x+c) 
-cot(d*x+c))*2^(1/2))*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+I*arctan(1/2*(-2* 
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*2^(1/2))*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/ 
2)*(6*sin(d*x+c)^2+3*tan(d*x+c)*sin(d*x+c))+(-6*cos(d*x+c)^2-3*cos(d*x+c)+ 
3)*tan(d*x+c)*arctan(1/2*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*2^(1/2))*(-c 
os(d*x+c)/(cos(d*x+c)+1))^(1/2)+(6*cos(d*x+c)+3)*sin(d*x+c)*arctan(1/2*(-2 
*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*2^(1/2))*(-cos(d*x+c)/(cos(d*x+c)+1))^(1 
/2)+I*(6*cos(d*x+c)^2+3*cos(d*x+c)-3)*arctan(1/2*(-2*cos(d*x+c)/(cos(d*x+c 
)+1))^(1/2)*2^(1/2))*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+6*I*sin(d*x+c)^2+1 
0*I*cos(d*x+c)^2-4*cos(d*x+c)*sin(d*x+c))*a*(a*(1+I*tan(d*x+c)))^(1/2)
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 222 vs. \(2 (91) = 182\).

Time = 0.08 (sec) , antiderivative size = 222, normalized size of antiderivative = 1.82 \[ \int \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=\frac {3 \, \sqrt {\frac {1}{2}} \sqrt {-\frac {a^{3}}{d^{2}}} d \log \left (\frac {{\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {-\frac {a^{3}}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + i \, a^{2}\right )} e^{\left (-i \, d x - i \, c\right )}}{d}\right ) - 3 \, \sqrt {\frac {1}{2}} \sqrt {-\frac {a^{3}}{d^{2}}} d \log \left (-\frac {{\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {-\frac {a^{3}}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - i \, a^{2}\right )} e^{\left (-i \, d x - i \, c\right )}}{d}\right ) + \sqrt {2} {\left (-i \, a e^{\left (4 i \, d x + 4 i \, c\right )} - 5 i \, a e^{\left (2 i \, d x + 2 i \, c\right )} - 4 i \, a\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}}{12 \, d} \] Input:

integrate(cos(d*x+c)^3*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")
 

Output:

1/12*(3*sqrt(1/2)*sqrt(-a^3/d^2)*d*log((sqrt(2)*sqrt(1/2)*(d*e^(2*I*d*x + 
2*I*c) + d)*sqrt(-a^3/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)) + I*a^2)*e^(- 
I*d*x - I*c)/d) - 3*sqrt(1/2)*sqrt(-a^3/d^2)*d*log(-(sqrt(2)*sqrt(1/2)*(d* 
e^(2*I*d*x + 2*I*c) + d)*sqrt(-a^3/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)) 
- I*a^2)*e^(-I*d*x - I*c)/d) + sqrt(2)*(-I*a*e^(4*I*d*x + 4*I*c) - 5*I*a*e 
^(2*I*d*x + 2*I*c) - 4*I*a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))/d
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**3*(a+I*a*tan(d*x+c))**(3/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 884 vs. \(2 (91) = 182\).

Time = 0.28 (sec) , antiderivative size = 884, normalized size of antiderivative = 7.25 \[ \int \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=\text {Too large to display} \] Input:

integrate(cos(d*x+c)^3*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")
 

Output:

-1/48*(4*(I*sqrt(2)*a*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 
 1)) - sqrt(2)*a*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) 
*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(3/4)* 
sqrt(a) + 12*(I*sqrt(2)*a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2* 
c) + 1)) - sqrt(2)*a*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 
1)))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1 
/4)*sqrt(a) + 3*(2*sqrt(2)*a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c 
)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos( 
2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x 
 + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1) 
) + 1) - 2*sqrt(2)*a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2* 
cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 
2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) 
+ 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1) - 
 I*sqrt(2)*a*log(sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d* 
x + 2*c) + 1)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + 
 sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*si 
n(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + 2*(cos(2*d*x + 
2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan 
2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + I*sqrt(2)*a*log(sqrt(...
 

Giac [F(-2)]

Exception generated. \[ \int \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(cos(d*x+c)^3*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeDone
 

Mupad [F(-1)]

Timed out. \[ \int \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=\int {\cos \left (c+d\,x\right )}^3\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2} \,d x \] Input:

int(cos(c + d*x)^3*(a + a*tan(c + d*x)*1i)^(3/2),x)
 

Output:

int(cos(c + d*x)^3*(a + a*tan(c + d*x)*1i)^(3/2), x)
 

Reduce [F]

\[ \int \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=\sqrt {a}\, a \left (\left (\int \sqrt {\tan \left (d x +c \right ) i +1}\, \cos \left (d x +c \right )^{3} \tan \left (d x +c \right )d x \right ) i +\int \sqrt {\tan \left (d x +c \right ) i +1}\, \cos \left (d x +c \right )^{3}d x \right ) \] Input:

int(cos(d*x+c)^3*(a+I*a*tan(d*x+c))^(3/2),x)
 

Output:

sqrt(a)*a*(int(sqrt(tan(c + d*x)*i + 1)*cos(c + d*x)**3*tan(c + d*x),x)*i 
+ int(sqrt(tan(c + d*x)*i + 1)*cos(c + d*x)**3,x))