\(\int \frac {\cos ^3(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx\) [346]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 193 \[ \int \frac {\cos ^3(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {35 i \text {arctanh}\left (\frac {\sqrt {a} \sec (c+d x)}{\sqrt {2} \sqrt {a+i a \tan (c+d x)}}\right )}{64 \sqrt {2} \sqrt {a} d}+\frac {35 i \cos (c+d x)}{96 d \sqrt {a+i a \tan (c+d x)}}+\frac {i \cos ^3(c+d x)}{4 d \sqrt {a+i a \tan (c+d x)}}-\frac {35 i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{64 a d}-\frac {7 i \cos ^3(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 a d} \] Output:

35/128*I*arctanh(1/2*a^(1/2)*sec(d*x+c)*2^(1/2)/(a+I*a*tan(d*x+c))^(1/2))* 
2^(1/2)/a^(1/2)/d+35/96*I*cos(d*x+c)/d/(a+I*a*tan(d*x+c))^(1/2)+1/4*I*cos( 
d*x+c)^3/d/(a+I*a*tan(d*x+c))^(1/2)-35/64*I*cos(d*x+c)*(a+I*a*tan(d*x+c))^ 
(1/2)/a/d-7/24*I*cos(d*x+c)^3*(a+I*a*tan(d*x+c))^(1/2)/a/d
 

Mathematica [A] (verified)

Time = 0.74 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.61 \[ \int \frac {\cos ^3(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {\sec (c+d x) \left (-41 i+105 i \sqrt {1+e^{2 i (c+d x)}} \text {arctanh}\left (\sqrt {1+e^{2 i (c+d x)}}\right )-43 i \cos (2 (c+d x))-2 i \cos (4 (c+d x))+133 \sin (2 (c+d x))+14 \sin (4 (c+d x))\right )}{384 d \sqrt {a+i a \tan (c+d x)}} \] Input:

Integrate[Cos[c + d*x]^3/Sqrt[a + I*a*Tan[c + d*x]],x]
 

Output:

(Sec[c + d*x]*(-41*I + (105*I)*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[Sqrt[ 
1 + E^((2*I)*(c + d*x))]] - (43*I)*Cos[2*(c + d*x)] - (2*I)*Cos[4*(c + d*x 
)] + 133*Sin[2*(c + d*x)] + 14*Sin[4*(c + d*x)]))/(384*d*Sqrt[a + I*a*Tan[ 
c + d*x]])
 

Rubi [A] (verified)

Time = 0.86 (sec) , antiderivative size = 205, normalized size of antiderivative = 1.06, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.423, Rules used = {3042, 3983, 3042, 3978, 3042, 3983, 3042, 3971, 3042, 3970, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^3(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sec (c+d x)^3 \sqrt {a+i a \tan (c+d x)}}dx\)

\(\Big \downarrow \) 3983

\(\displaystyle \frac {7 \int \cos ^3(c+d x) \sqrt {i \tan (c+d x) a+a}dx}{8 a}+\frac {i \cos ^3(c+d x)}{4 d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sec (c+d x)^3}dx}{8 a}+\frac {i \cos ^3(c+d x)}{4 d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3978

\(\displaystyle \frac {7 \left (\frac {5}{6} a \int \frac {\cos (c+d x)}{\sqrt {i \tan (c+d x) a+a}}dx-\frac {i \cos ^3(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}\right )}{8 a}+\frac {i \cos ^3(c+d x)}{4 d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 \left (\frac {5}{6} a \int \frac {1}{\sec (c+d x) \sqrt {i \tan (c+d x) a+a}}dx-\frac {i \cos ^3(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}\right )}{8 a}+\frac {i \cos ^3(c+d x)}{4 d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3983

\(\displaystyle \frac {7 \left (\frac {5}{6} a \left (\frac {3 \int \cos (c+d x) \sqrt {i \tan (c+d x) a+a}dx}{4 a}+\frac {i \cos (c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}\right )-\frac {i \cos ^3(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}\right )}{8 a}+\frac {i \cos ^3(c+d x)}{4 d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 \left (\frac {5}{6} a \left (\frac {3 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sec (c+d x)}dx}{4 a}+\frac {i \cos (c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}\right )-\frac {i \cos ^3(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}\right )}{8 a}+\frac {i \cos ^3(c+d x)}{4 d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3971

\(\displaystyle \frac {7 \left (\frac {5}{6} a \left (\frac {3 \left (\frac {1}{2} a \int \frac {\sec (c+d x)}{\sqrt {i \tan (c+d x) a+a}}dx-\frac {i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{d}\right )}{4 a}+\frac {i \cos (c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}\right )-\frac {i \cos ^3(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}\right )}{8 a}+\frac {i \cos ^3(c+d x)}{4 d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 \left (\frac {5}{6} a \left (\frac {3 \left (\frac {1}{2} a \int \frac {\sec (c+d x)}{\sqrt {i \tan (c+d x) a+a}}dx-\frac {i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{d}\right )}{4 a}+\frac {i \cos (c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}\right )-\frac {i \cos ^3(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}\right )}{8 a}+\frac {i \cos ^3(c+d x)}{4 d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3970

\(\displaystyle \frac {7 \left (\frac {5}{6} a \left (\frac {3 \left (\frac {i a \int \frac {1}{2-\frac {a \sec ^2(c+d x)}{i \tan (c+d x) a+a}}d\frac {\sec (c+d x)}{\sqrt {i \tan (c+d x) a+a}}}{d}-\frac {i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{d}\right )}{4 a}+\frac {i \cos (c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}\right )-\frac {i \cos ^3(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}\right )}{8 a}+\frac {i \cos ^3(c+d x)}{4 d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {7 \left (\frac {5}{6} a \left (\frac {3 \left (\frac {i \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \sec (c+d x)}{\sqrt {2} \sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {2} d}-\frac {i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{d}\right )}{4 a}+\frac {i \cos (c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}\right )-\frac {i \cos ^3(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}\right )}{8 a}+\frac {i \cos ^3(c+d x)}{4 d \sqrt {a+i a \tan (c+d x)}}\)

Input:

Int[Cos[c + d*x]^3/Sqrt[a + I*a*Tan[c + d*x]],x]
 

Output:

((I/4)*Cos[c + d*x]^3)/(d*Sqrt[a + I*a*Tan[c + d*x]]) + (7*(((-1/3*I)*Cos[ 
c + d*x]^3*Sqrt[a + I*a*Tan[c + d*x]])/d + (5*a*(((I/2)*Cos[c + d*x])/(d*S 
qrt[a + I*a*Tan[c + d*x]]) + (3*((I*Sqrt[a]*ArcTanh[(Sqrt[a]*Sec[c + d*x]) 
/(Sqrt[2]*Sqrt[a + I*a*Tan[c + d*x]])])/(Sqrt[2]*d) - (I*Cos[c + d*x]*Sqrt 
[a + I*a*Tan[c + d*x]])/d))/(4*a)))/6))/(8*a)
 

Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3970
Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_S 
ymbol] :> Simp[-2*(a/(b*f))   Subst[Int[1/(2 - a*x^2), x], x, Sec[e + f*x]/ 
Sqrt[a + b*Tan[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 + b^2, 0 
]
 

rule 3971
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*( 
x_)])^(n_), x_Symbol] :> Simp[b*(d*Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/ 
(a*f*m)), x] + Simp[a/(2*d^2)   Int[(d*Sec[e + f*x])^(m + 2)*(a + b*Tan[e + 
 f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && 
 EqQ[m/2 + n, 0] && GtQ[n, 0]
 

rule 3978
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x 
_)])^(n_), x_Symbol] :> Simp[b*(d*Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/( 
a*f*m)), x] + Simp[a*((m + n)/(m*d^2))   Int[(d*Sec[e + f*x])^(m + 2)*(a + 
b*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b 
^2, 0] && GtQ[n, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n]
 

rule 3983
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*( 
x_)])^(n_), x_Symbol] :> Simp[a*(d*Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/ 
(b*f*(m + 2*n))), x] + Simp[Simplify[m + n]/(a*(m + 2*n))   Int[(d*Sec[e + 
f*x])^m*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m}, x 
] && EqQ[a^2 + b^2, 0] && LtQ[n, 0] && NeQ[m + 2*n, 0] && IntegersQ[2*m, 2* 
n]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 360 vs. \(2 (156 ) = 312\).

Time = 9.39 (sec) , antiderivative size = 361, normalized size of antiderivative = 1.87

method result size
default \(-\frac {-105 i \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}{2 \sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}}\right ) \sin \left (d x +c \right )+\left (-105 \cos \left (d x +c \right )-105\right ) \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}{2 \sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}}\right )+105 i \cos \left (d x +c \right ) \sqrt {2}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-105 \sin \left (d x +c \right ) \sqrt {2}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+\sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (-112 \cos \left (d x +c \right )^{2}-112 \cos \left (d x +c \right )-210\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+i \cos \left (d x +c \right ) \left (16 \cos \left (d x +c \right )^{3}+16 \cos \left (d x +c \right )^{2}+70 \cos \left (d x +c \right )-140\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}{384 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}}\) \(361\)

Input:

int(cos(d*x+c)^3/(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-1/384/d*(-105*I*arctanh(1/2*2^(1/2)*(-I+cot(d*x+c)-csc(d*x+c))/(cot(d*x+c 
)^2-2*cot(d*x+c)*csc(d*x+c)+csc(d*x+c)^2-1)^(1/2))*sin(d*x+c)+(-105*cos(d* 
x+c)-105)*arctanh(1/2*2^(1/2)*(-I+cot(d*x+c)-csc(d*x+c))/(cot(d*x+c)^2-2*c 
ot(d*x+c)*csc(d*x+c)+csc(d*x+c)^2-1)^(1/2))+105*I*(-2*cos(d*x+c)/(cos(d*x+ 
c)+1))^(1/2)*cos(d*x+c)*2^(1/2)-105*sin(d*x+c)*2^(1/2)*(-2*cos(d*x+c)/(cos 
(d*x+c)+1))^(1/2)+sin(d*x+c)*cos(d*x+c)*(-112*cos(d*x+c)^2-112*cos(d*x+c)- 
210)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+I*cos(d*x+c)*(16*cos(d*x+c)^3+16*c 
os(d*x+c)^2+70*cos(d*x+c)-140)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))/(cos(d* 
x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)/(a*(1+I*tan(d*x+c)))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 267, normalized size of antiderivative = 1.38 \[ \int \frac {\cos ^3(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {{\left (-105 i \, \sqrt {\frac {1}{2}} a d \sqrt {\frac {1}{a d^{2}}} e^{\left (4 i \, d x + 4 i \, c\right )} \log \left (-\frac {35 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (i \, d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {1}{a d^{2}}} - i\right )} e^{\left (-i \, d x - i \, c\right )}}{32 \, d}\right ) + 105 i \, \sqrt {\frac {1}{2}} a d \sqrt {\frac {1}{a d^{2}}} e^{\left (4 i \, d x + 4 i \, c\right )} \log \left (-\frac {35 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (-i \, d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {1}{a d^{2}}} - i\right )} e^{\left (-i \, d x - i \, c\right )}}{32 \, d}\right ) + \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-8 i \, e^{\left (8 i \, d x + 8 i \, c\right )} - 88 i \, e^{\left (6 i \, d x + 6 i \, c\right )} - 41 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 45 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 6 i\right )}\right )} e^{\left (-4 i \, d x - 4 i \, c\right )}}{384 \, a d} \] Input:

integrate(cos(d*x+c)^3/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

1/384*(-105*I*sqrt(1/2)*a*d*sqrt(1/(a*d^2))*e^(4*I*d*x + 4*I*c)*log(-35/32 
*(sqrt(2)*sqrt(1/2)*(I*d*e^(2*I*d*x + 2*I*c) + I*d)*sqrt(a/(e^(2*I*d*x + 2 
*I*c) + 1))*sqrt(1/(a*d^2)) - I)*e^(-I*d*x - I*c)/d) + 105*I*sqrt(1/2)*a*d 
*sqrt(1/(a*d^2))*e^(4*I*d*x + 4*I*c)*log(-35/32*(sqrt(2)*sqrt(1/2)*(-I*d*e 
^(2*I*d*x + 2*I*c) - I*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(1/(a*d^2) 
) - I)*e^(-I*d*x - I*c)/d) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(-8 
*I*e^(8*I*d*x + 8*I*c) - 88*I*e^(6*I*d*x + 6*I*c) - 41*I*e^(4*I*d*x + 4*I* 
c) + 45*I*e^(2*I*d*x + 2*I*c) + 6*I))*e^(-4*I*d*x - 4*I*c)/(a*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**3/(a+I*a*tan(d*x+c))**(1/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1938 vs. \(2 (146) = 292\).

Time = 0.38 (sec) , antiderivative size = 1938, normalized size of antiderivative = 10.04 \[ \int \frac {\cos ^3(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\text {Too large to display} \] Input:

integrate(cos(d*x+c)^3/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

-1/1536*(4*(cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + sin(1 
/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + 2*cos(1/2*arctan2(sin( 
4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)^(3/4)*((-3*I*sqrt(2)*cos(4*d*x + 4*c 
) - 3*sqrt(2)*sin(4*d*x + 4*c) + 8*I*sqrt(2))*cos(3/2*arctan2(sin(1/2*arct 
an2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))), cos(1/2*arctan2(sin(4*d*x + 4*c) 
, cos(4*d*x + 4*c))) + 1)) + (3*sqrt(2)*cos(4*d*x + 4*c) - 3*I*sqrt(2)*sin 
(4*d*x + 4*c) - 8*sqrt(2))*sin(3/2*arctan2(sin(1/2*arctan2(sin(4*d*x + 4*c 
), cos(4*d*x + 4*c))), cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)) 
) + 1)))*sqrt(a) + 12*(cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)) 
)^2 + sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + 2*cos(1/2*a 
rctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)^(1/4)*((-I*sqrt(2)*cos(4* 
d*x + 4*c) - 12*I*sqrt(2)*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4* 
c))) - sqrt(2)*sin(4*d*x + 4*c) - 12*sqrt(2)*sin(1/2*arctan2(sin(4*d*x + 4 
*c), cos(4*d*x + 4*c))) + 24*I*sqrt(2))*cos(1/2*arctan2(sin(1/2*arctan2(si 
n(4*d*x + 4*c), cos(4*d*x + 4*c))), cos(1/2*arctan2(sin(4*d*x + 4*c), cos( 
4*d*x + 4*c))) + 1)) + (sqrt(2)*cos(4*d*x + 4*c) + 12*sqrt(2)*cos(1/2*arct 
an2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) - I*sqrt(2)*sin(4*d*x + 4*c) - 12 
*I*sqrt(2)*sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) - 24*sqrt( 
2))*sin(1/2*arctan2(sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))), 
cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)))*sqrt(a) + 1...
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\cos ^3(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(cos(d*x+c)^3/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeDone
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^3}{\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}} \,d x \] Input:

int(cos(c + d*x)^3/(a + a*tan(c + d*x)*1i)^(1/2),x)
 

Output:

int(cos(c + d*x)^3/(a + a*tan(c + d*x)*1i)^(1/2), x)
 

Reduce [F]

\[ \int \frac {\cos ^3(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (-\left (\int \frac {\sqrt {\tan \left (d x +c \right ) i +1}\, \cos \left (d x +c \right )^{3} \tan \left (d x +c \right )}{\tan \left (d x +c \right )^{2}+1}d x \right ) i +\int \frac {\sqrt {\tan \left (d x +c \right ) i +1}\, \cos \left (d x +c \right )^{3}}{\tan \left (d x +c \right )^{2}+1}d x \right )}{a} \] Input:

int(cos(d*x+c)^3/(a+I*a*tan(d*x+c))^(1/2),x)
 

Output:

(sqrt(a)*( - int((sqrt(tan(c + d*x)*i + 1)*cos(c + d*x)**3*tan(c + d*x))/( 
tan(c + d*x)**2 + 1),x)*i + int((sqrt(tan(c + d*x)*i + 1)*cos(c + d*x)**3) 
/(tan(c + d*x)**2 + 1),x)))/a