\(\int \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)} \, dx\) [395]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 30, antiderivative size = 241 \[ \int \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)} \, dx=\frac {i \sqrt {2} \sqrt {a} \sqrt {e} \arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{d}-\frac {i \sqrt {2} \sqrt {a} \sqrt {e} \arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{d}+\frac {i \sqrt {2} \sqrt {a} \sqrt {e} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)} \left (\sqrt {a}+\cos (c+d x) \left (\sqrt {a}+i \sqrt {a} \tan (c+d x)\right )\right )}\right )}{d} \] Output:

I*2^(1/2)*a^(1/2)*e^(1/2)*arctan(1-2^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2 
)/a^(1/2)/(e*sec(d*x+c))^(1/2))/d-I*2^(1/2)*a^(1/2)*e^(1/2)*arctan(1+2^(1/ 
2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))/d+I*2^(1 
/2)*a^(1/2)*e^(1/2)*arctanh(2^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/(e*se 
c(d*x+c))^(1/2)/(a^(1/2)+cos(d*x+c)*(a^(1/2)+I*a^(1/2)*tan(d*x+c))))/d
 

Mathematica [A] (warning: unable to verify)

Time = 1.70 (sec) , antiderivative size = 277, normalized size of antiderivative = 1.15 \[ \int \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)} \, dx=-\frac {2 e \left (\text {arctanh}\left (\frac {\sqrt {1-i \cos (c)+\sin (c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}}{\sqrt {-1-i \cos (c)-\sin (c)} \sqrt {i+\tan \left (\frac {d x}{2}\right )}}\right ) \sqrt {-1-i \cos (c)-\sin (c)} \sqrt {1+i \cos (c)-\sin (c)}-\text {arctanh}\left (\frac {\sqrt {1+i \cos (c)-\sin (c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}}{\sqrt {-1+i \cos (c)+\sin (c)} \sqrt {i+\tan \left (\frac {d x}{2}\right )}}\right ) \sqrt {1-i \cos (c)+\sin (c)} \sqrt {-1+i \cos (c)+\sin (c)}\right ) \sqrt {i+\tan \left (\frac {d x}{2}\right )} \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)} \sqrt {1+\cos (2 c)+i \sin (2 c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}} \] Input:

Integrate[Sqrt[e*Sec[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]],x]
 

Output:

(-2*e*(ArcTanh[(Sqrt[1 - I*Cos[c] + Sin[c]]*Sqrt[I - Tan[(d*x)/2]])/(Sqrt[ 
-1 - I*Cos[c] - Sin[c]]*Sqrt[I + Tan[(d*x)/2]])]*Sqrt[-1 - I*Cos[c] - Sin[ 
c]]*Sqrt[1 + I*Cos[c] - Sin[c]] - ArcTanh[(Sqrt[1 + I*Cos[c] - Sin[c]]*Sqr 
t[I - Tan[(d*x)/2]])/(Sqrt[-1 + I*Cos[c] + Sin[c]]*Sqrt[I + Tan[(d*x)/2]]) 
]*Sqrt[1 - I*Cos[c] + Sin[c]]*Sqrt[-1 + I*Cos[c] + Sin[c]])*Sqrt[I + Tan[( 
d*x)/2]]*Sqrt[a + I*a*Tan[c + d*x]])/(d*Sqrt[e*Sec[c + d*x]]*Sqrt[1 + Cos[ 
2*c] + I*Sin[2*c]]*Sqrt[I - Tan[(d*x)/2]])
 

Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 333, normalized size of antiderivative = 1.38, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 3976, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}dx\)

\(\Big \downarrow \) 3976

\(\displaystyle -\frac {4 i a e^2 \int \frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e \left (a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2\right )}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{d}\)

\(\Big \downarrow \) 826

\(\displaystyle -\frac {4 i a e^2 \left (\frac {\int \frac {a+\cos (c+d x) (i \tan (c+d x) a+a)}{a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (i \tan (c+d x) a+a)}{a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{d}\)

\(\Big \downarrow \) 1476

\(\displaystyle -\frac {4 i a e^2 \left (\frac {\frac {\int \frac {1}{\frac {a}{e}-\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}+\frac {\int \frac {1}{\frac {a}{e}+\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (i \tan (c+d x) a+a)}{a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{d}\)

\(\Big \downarrow \) 1082

\(\displaystyle -\frac {4 i a e^2 \left (\frac {\frac {\int \frac {1}{-\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}-1}d\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\int \frac {1}{-\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}-1}d\left (\frac {\sqrt {2} \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {a} \sqrt {e \sec (c+d x)}}+1\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (i \tan (c+d x) a+a)}{a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{d}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {4 i a e^2 \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (i \tan (c+d x) a+a)}{a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{d}\)

\(\Big \downarrow \) 1479

\(\displaystyle -\frac {4 i a e^2 \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt {a}-\frac {2 \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{\sqrt {e} \left (\frac {a}{e}-\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}\right )}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {a}+\frac {\sqrt {2} \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}\right )}{\sqrt {e} \left (\frac {a}{e}+\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}\right )}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}\right )}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {4 i a e^2 \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\frac {\int \frac {\sqrt {2} \sqrt {a}-\frac {2 \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{\sqrt {e} \left (\frac {a}{e}-\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}\right )}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {a}+\frac {\sqrt {2} \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}\right )}{\sqrt {e} \left (\frac {a}{e}+\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}\right )}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}\right )}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {4 i a e^2 \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\frac {\int \frac {\sqrt {2} \sqrt {a}-\frac {2 \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{\frac {a}{e}-\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} e}+\frac {\int \frac {\sqrt {a}+\frac {\sqrt {2} \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{\frac {a}{e}+\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {a} e}}{2 e}\right )}{d}\)

\(\Big \downarrow \) 1103

\(\displaystyle -\frac {4 i a e^2 \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\frac {\log \left (\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{2 \sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\log \left (-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{2 \sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}\right )}{d}\)

Input:

Int[Sqrt[e*Sec[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]],x]
 

Output:

((-4*I)*a*e^2*((-(ArcTan[1 - (Sqrt[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/ 
(Sqrt[a]*Sqrt[e*Sec[c + d*x]])]/(Sqrt[2]*Sqrt[a]*Sqrt[e])) + ArcTan[1 + (S 
qrt[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x]])] 
/(Sqrt[2]*Sqrt[a]*Sqrt[e]))/(2*e) - (-1/2*Log[a - (Sqrt[2]*Sqrt[a]*Sqrt[e] 
*Sqrt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a + I*a* 
Tan[c + d*x])]/(Sqrt[2]*Sqrt[a]*Sqrt[e]) + Log[a + (Sqrt[2]*Sqrt[a]*Sqrt[e 
]*Sqrt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a + I*a 
*Tan[c + d*x])]/(2*Sqrt[2]*Sqrt[a]*Sqrt[e]))/(2*e)))/d
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3976
Int[Sqrt[(d_.)*sec[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-4*b*(d^2/f)   Subst[Int[x^2/(a^2 + d^2*x^4), x] 
, x, Sqrt[a + b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]]], x] /; FreeQ[{a, b, d, 
e, f}, x] && EqQ[a^2 + b^2, 0]
 
Maple [A] (verified)

Time = 7.78 (sec) , antiderivative size = 204, normalized size of antiderivative = 0.85

method result size
default \(-\frac {\sqrt {e \sec \left (d x +c \right )}\, \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \cos \left (d x +c \right ) \left (i \operatorname {arctanh}\left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}}\right )+i \operatorname {arctanh}\left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\operatorname {arctanh}\left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}}\right )-\operatorname {arctanh}\left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}}\right )\right )}{d \left (-\sin \left (d x +c \right )+i \cos \left (d x +c \right )+i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}}\) \(204\)

Input:

int((e*sec(d*x+c))^(1/2)*(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-1/d*(e*sec(d*x+c))^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)*cos(d*x+c)*(I*arctanh 
(1/2/(1/(cos(d*x+c)+1))^(1/2)*(cot(d*x+c)-csc(d*x+c)+1))+I*arctanh(1/2*(co 
t(d*x+c)-csc(d*x+c)-1)/(1/(cos(d*x+c)+1))^(1/2))+arctanh(1/2/(1/(cos(d*x+c 
)+1))^(1/2)*(cot(d*x+c)-csc(d*x+c)+1))-arctanh(1/2*(cot(d*x+c)-csc(d*x+c)- 
1)/(1/(cos(d*x+c)+1))^(1/2)))/(-sin(d*x+c)+I*cos(d*x+c)+I)/(1/(cos(d*x+c)+ 
1))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 323, normalized size of antiderivative = 1.34 \[ \int \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)} \, dx=\frac {1}{2} \, \sqrt {\frac {4 i \, a e}{d^{2}}} \log \left (2 \, \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} + d \sqrt {\frac {4 i \, a e}{d^{2}}}\right ) - \frac {1}{2} \, \sqrt {\frac {4 i \, a e}{d^{2}}} \log \left (2 \, \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} - d \sqrt {\frac {4 i \, a e}{d^{2}}}\right ) - \frac {1}{2} \, \sqrt {-\frac {4 i \, a e}{d^{2}}} \log \left (2 \, \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} + d \sqrt {-\frac {4 i \, a e}{d^{2}}}\right ) + \frac {1}{2} \, \sqrt {-\frac {4 i \, a e}{d^{2}}} \log \left (2 \, \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} - d \sqrt {-\frac {4 i \, a e}{d^{2}}}\right ) \] Input:

integrate((e*sec(d*x+c))^(1/2)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fric 
as")
 

Output:

1/2*sqrt(4*I*a*e/d^2)*log(2*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2 
*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)*e^(1/2*I*d*x + 1/2*I*c) + 
d*sqrt(4*I*a*e/d^2)) - 1/2*sqrt(4*I*a*e/d^2)*log(2*sqrt(a/(e^(2*I*d*x + 2* 
I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)*e^( 
1/2*I*d*x + 1/2*I*c) - d*sqrt(4*I*a*e/d^2)) - 1/2*sqrt(-4*I*a*e/d^2)*log(2 
*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2 
*I*d*x + 2*I*c) + 1)*e^(1/2*I*d*x + 1/2*I*c) + d*sqrt(-4*I*a*e/d^2)) + 1/2 
*sqrt(-4*I*a*e/d^2)*log(2*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I 
*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)*e^(1/2*I*d*x + 1/2*I*c) - d* 
sqrt(-4*I*a*e/d^2))
 

Sympy [F]

\[ \int \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)} \, dx=\int \sqrt {e \sec {\left (c + d x \right )}} \sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )}\, dx \] Input:

integrate((e*sec(d*x+c))**(1/2)*(a+I*a*tan(d*x+c))**(1/2),x)
 

Output:

Integral(sqrt(e*sec(c + d*x))*sqrt(I*a*(tan(c + d*x) - I)), x)
 

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1400 vs. \(2 (175) = 350\).

Time = 0.36 (sec) , antiderivative size = 1400, normalized size of antiderivative = 5.81 \[ \int \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)} \, dx=\text {Too large to display} \] Input:

integrate((e*sec(d*x+c))^(1/2)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxi 
ma")
 

Output:

1/4*(-2*I*sqrt(2)*arctan2(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), co 
s(3/2*d*x + 3/2*c))) + 1, sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), co 
s(3/2*d*x + 3/2*c))) + 1) - 2*I*sqrt(2)*arctan2(sqrt(2)*cos(1/3*arctan2(si 
n(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1, -sqrt(2)*sin(1/3*arctan2(s 
in(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) - 2*I*sqrt(2)*arctan2(sqr 
t(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 1, sqr 
t(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) - 2 
*I*sqrt(2)*arctan2(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d 
*x + 3/2*c))) - 1, -sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2* 
d*x + 3/2*c))) + 1) - 2*sqrt(2)*arctan2(sqrt(2)*sin(1/3*arctan2(sin(3/2*d* 
x + 3/2*c), cos(3/2*d*x + 3/2*c))) + sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), 
 cos(3/2*d*x + 3/2*c))), sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos 
(3/2*d*x + 3/2*c))) + cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 
3/2*c))) + 1) + 2*sqrt(2)*arctan2(-sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3 
/2*c), cos(3/2*d*x + 3/2*c))) + sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos( 
3/2*d*x + 3/2*c))), -sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2 
*d*x + 3/2*c))) + cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2* 
c))) + 1) + I*sqrt(2)*log(2*sqrt(2)*sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), 
cos(3/2*d*x + 3/2*c)))*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 
 3/2*c))) + 2*(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*...
 

Giac [F(-2)]

Exception generated. \[ \int \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((e*sec(d*x+c))^(1/2)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac 
")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeDone
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)} \, dx=\int \sqrt {\frac {e}{\cos \left (c+d\,x\right )}}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}} \,d x \] Input:

int((e/cos(c + d*x))^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2),x)
 

Output:

int((e/cos(c + d*x))^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2), x)
 

Reduce [F]

\[ \int \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)} \, dx=\frac {2 \sqrt {e}\, \sqrt {a}\, i \left (-\sqrt {\sec \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}+\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )d x \right ) d \right )}{d} \] Input:

int((e*sec(d*x+c))^(1/2)*(a+I*a*tan(d*x+c))^(1/2),x)
 

Output:

(2*sqrt(e)*sqrt(a)*i*( - sqrt(sec(c + d*x))*sqrt(tan(c + d*x)*i + 1) + int 
(sqrt(sec(c + d*x))*sqrt(tan(c + d*x)*i + 1)*tan(c + d*x),x)*d))/d