\(\int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {e \sec (c+d x)}} \, dx\) [403]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 30, antiderivative size = 398 \[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {e \sec (c+d x)}} \, dx=\frac {i \sqrt {2} a^{5/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right ) \sec (c+d x)}{d \sqrt {e} \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {i \sqrt {2} a^{5/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right ) \sec (c+d x)}{d \sqrt {e} \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {i \sqrt {2} a^{5/2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)} \left (\sqrt {a}+\cos (c+d x) \left (\sqrt {a}-i \sqrt {a} \tan (c+d x)\right )\right )}\right ) \sec (c+d x)}{d \sqrt {e} \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {4 i a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}} \] Output:

I*2^(1/2)*a^(5/2)*arctan(1-2^(1/2)*e^(1/2)*(a-I*a*tan(d*x+c))^(1/2)/a^(1/2 
)/(e*sec(d*x+c))^(1/2))*sec(d*x+c)/d/e^(1/2)/(a-I*a*tan(d*x+c))^(1/2)/(a+I 
*a*tan(d*x+c))^(1/2)-I*2^(1/2)*a^(5/2)*arctan(1+2^(1/2)*e^(1/2)*(a-I*a*tan 
(d*x+c))^(1/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))*sec(d*x+c)/d/e^(1/2)/(a-I*a*t 
an(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2)+I*2^(1/2)*a^(5/2)*arctanh(2^(1/2 
)*e^(1/2)*(a-I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/2)/(a^(1/2)+cos(d*x+c 
)*(a^(1/2)-I*a^(1/2)*tan(d*x+c))))*sec(d*x+c)/d/e^(1/2)/(a-I*a*tan(d*x+c)) 
^(1/2)/(a+I*a*tan(d*x+c))^(1/2)-4*I*a*(a+I*a*tan(d*x+c))^(1/2)/d/(e*sec(d* 
x+c))^(1/2)
 

Mathematica [A] (warning: unable to verify)

Time = 2.57 (sec) , antiderivative size = 401, normalized size of antiderivative = 1.01 \[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {e \sec (c+d x)}} \, dx=\frac {2 a e (\cos (d x)-i \sin (d x)) \left (\text {arctanh}\left (\frac {\sqrt {1+i \cos (c)-\sin (c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}}{\sqrt {-1+i \cos (c)+\sin (c)} \sqrt {i+\tan \left (\frac {d x}{2}\right )}}\right ) \sqrt {-1-i \cos (c)-\sin (c)} \sqrt {1+i \cos (c)-\sin (c)} (-i \cos (2 c)-\sin (2 c)) \sqrt {i+\tan \left (\frac {d x}{2}\right )}+\sqrt {-1+i \cos (c)+\sin (c)} \left (2 \sqrt {-1-i \cos (c)-\sin (c)} (\cos (c)-i \sin (c)) \sqrt {i-\tan \left (\frac {d x}{2}\right )}+\text {arctanh}\left (\frac {\sqrt {1-i \cos (c)+\sin (c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}}{\sqrt {-1-i \cos (c)-\sin (c)} \sqrt {i+\tan \left (\frac {d x}{2}\right )}}\right ) \sqrt {1-i \cos (c)+\sin (c)} (i \cos (2 c)+\sin (2 c)) \sqrt {i+\tan \left (\frac {d x}{2}\right )}\right )\right ) (-i+\tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}{d (e \sec (c+d x))^{3/2} \sqrt {-1-i \cos (c)-\sin (c)} \sqrt {-1+i \cos (c)+\sin (c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}} \] Input:

Integrate[(a + I*a*Tan[c + d*x])^(3/2)/Sqrt[e*Sec[c + d*x]],x]
 

Output:

(2*a*e*(Cos[d*x] - I*Sin[d*x])*(ArcTanh[(Sqrt[1 + I*Cos[c] - Sin[c]]*Sqrt[ 
I - Tan[(d*x)/2]])/(Sqrt[-1 + I*Cos[c] + Sin[c]]*Sqrt[I + Tan[(d*x)/2]])]* 
Sqrt[-1 - I*Cos[c] - Sin[c]]*Sqrt[1 + I*Cos[c] - Sin[c]]*((-I)*Cos[2*c] - 
Sin[2*c])*Sqrt[I + Tan[(d*x)/2]] + Sqrt[-1 + I*Cos[c] + Sin[c]]*(2*Sqrt[-1 
 - I*Cos[c] - Sin[c]]*(Cos[c] - I*Sin[c])*Sqrt[I - Tan[(d*x)/2]] + ArcTanh 
[(Sqrt[1 - I*Cos[c] + Sin[c]]*Sqrt[I - Tan[(d*x)/2]])/(Sqrt[-1 - I*Cos[c] 
- Sin[c]]*Sqrt[I + Tan[(d*x)/2]])]*Sqrt[1 - I*Cos[c] + Sin[c]]*(I*Cos[2*c] 
 + Sin[2*c])*Sqrt[I + Tan[(d*x)/2]]))*(-I + Tan[c + d*x])*Sqrt[a + I*a*Tan 
[c + d*x]])/(d*(e*Sec[c + d*x])^(3/2)*Sqrt[-1 - I*Cos[c] - Sin[c]]*Sqrt[-1 
 + I*Cos[c] + Sin[c]]*Sqrt[I - Tan[(d*x)/2]])
 

Rubi [A] (verified)

Time = 0.85 (sec) , antiderivative size = 411, normalized size of antiderivative = 1.03, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.467, Rules used = {3042, 3977, 3042, 3980, 3042, 3976, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {e \sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {e \sec (c+d x)}}dx\)

\(\Big \downarrow \) 3977

\(\displaystyle -\frac {a^2 \int \frac {(e \sec (c+d x))^{3/2}}{\sqrt {i \tan (c+d x) a+a}}dx}{e^2}-\frac {4 i a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a^2 \int \frac {(e \sec (c+d x))^{3/2}}{\sqrt {i \tan (c+d x) a+a}}dx}{e^2}-\frac {4 i a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}\)

\(\Big \downarrow \) 3980

\(\displaystyle -\frac {a^2 \sec (c+d x) \int \sqrt {e \sec (c+d x)} \sqrt {a-i a \tan (c+d x)}dx}{e \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {4 i a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a^2 \sec (c+d x) \int \sqrt {e \sec (c+d x)} \sqrt {a-i a \tan (c+d x)}dx}{e \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {4 i a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}\)

\(\Big \downarrow \) 3976

\(\displaystyle -\frac {4 i a^3 e \sec (c+d x) \int \frac {\cos (c+d x) (a-i a \tan (c+d x))}{e \left (a^2+\cos ^2(c+d x) (a-i a \tan (c+d x))^2\right )}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {4 i a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}\)

\(\Big \downarrow \) 826

\(\displaystyle -\frac {4 i a^3 e \sec (c+d x) \left (\frac {\int \frac {a+\cos (c+d x) (a-i a \tan (c+d x))}{a^2+\cos ^2(c+d x) (a-i a \tan (c+d x))^2}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (a-i a \tan (c+d x))}{a^2+\cos ^2(c+d x) (a-i a \tan (c+d x))^2}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {4 i a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}\)

\(\Big \downarrow \) 1476

\(\displaystyle -\frac {4 i a^3 e \sec (c+d x) \left (\frac {\frac {\int \frac {1}{\frac {a}{e}-\frac {\sqrt {2} \sqrt {a-i a \tan (c+d x)} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (a-i a \tan (c+d x))}{e}}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 e}+\frac {\int \frac {1}{\frac {a}{e}+\frac {\sqrt {2} \sqrt {a-i a \tan (c+d x)} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (a-i a \tan (c+d x))}{e}}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 e}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (a-i a \tan (c+d x))}{a^2+\cos ^2(c+d x) (a-i a \tan (c+d x))^2}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {4 i a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}\)

\(\Big \downarrow \) 1082

\(\displaystyle -\frac {4 i a^3 e \sec (c+d x) \left (\frac {\frac {\int \frac {1}{-\frac {\cos (c+d x) (a-i a \tan (c+d x))}{e}-1}d\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\int \frac {1}{-\frac {\cos (c+d x) (a-i a \tan (c+d x))}{e}-1}d\left (\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}+1\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (a-i a \tan (c+d x))}{a^2+\cos ^2(c+d x) (a-i a \tan (c+d x))^2}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {4 i a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {4 i a^3 e \sec (c+d x) \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (a-i a \tan (c+d x))}{a^2+\cos ^2(c+d x) (a-i a \tan (c+d x))^2}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {4 i a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}\)

\(\Big \downarrow \) 1479

\(\displaystyle -\frac {4 i a^3 e \sec (c+d x) \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt {a}-\frac {2 \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{\sqrt {e} \left (\frac {a}{e}-\frac {\sqrt {2} \sqrt {a-i a \tan (c+d x)} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (a-i a \tan (c+d x))}{e}\right )}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {a}+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{\sqrt {e} \left (\frac {a}{e}+\frac {\sqrt {2} \sqrt {a-i a \tan (c+d x)} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (a-i a \tan (c+d x))}{e}\right )}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {4 i a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {4 i a^3 e \sec (c+d x) \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\frac {\int \frac {\sqrt {2} \sqrt {a}-\frac {2 \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{\sqrt {e} \left (\frac {a}{e}-\frac {\sqrt {2} \sqrt {a-i a \tan (c+d x)} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (a-i a \tan (c+d x))}{e}\right )}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {a}+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{\sqrt {e} \left (\frac {a}{e}+\frac {\sqrt {2} \sqrt {a-i a \tan (c+d x)} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (a-i a \tan (c+d x))}{e}\right )}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {4 i a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {4 i a^3 e \sec (c+d x) \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\frac {\int \frac {\sqrt {2} \sqrt {a}-\frac {2 \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{\frac {a}{e}-\frac {\sqrt {2} \sqrt {a-i a \tan (c+d x)} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (a-i a \tan (c+d x))}{e}}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} e}+\frac {\int \frac {\sqrt {a}+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{\frac {a}{e}+\frac {\sqrt {2} \sqrt {a-i a \tan (c+d x)} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (a-i a \tan (c+d x))}{e}}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {a} e}}{2 e}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {4 i a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}\)

\(\Big \downarrow \) 1103

\(\displaystyle -\frac {4 i a^3 e \sec (c+d x) \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\frac {\log \left (\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))+a\right )}{2 \sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\log \left (-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))+a\right )}{2 \sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {4 i a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {e \sec (c+d x)}}\)

Input:

Int[(a + I*a*Tan[c + d*x])^(3/2)/Sqrt[e*Sec[c + d*x]],x]
 

Output:

((-4*I)*a^3*e*((-(ArcTan[1 - (Sqrt[2]*Sqrt[e]*Sqrt[a - I*a*Tan[c + d*x]])/ 
(Sqrt[a]*Sqrt[e*Sec[c + d*x]])]/(Sqrt[2]*Sqrt[a]*Sqrt[e])) + ArcTan[1 + (S 
qrt[2]*Sqrt[e]*Sqrt[a - I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x]])] 
/(Sqrt[2]*Sqrt[a]*Sqrt[e]))/(2*e) - (-1/2*Log[a - (Sqrt[2]*Sqrt[a]*Sqrt[e] 
*Sqrt[a - I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a - I*a* 
Tan[c + d*x])]/(Sqrt[2]*Sqrt[a]*Sqrt[e]) + Log[a + (Sqrt[2]*Sqrt[a]*Sqrt[e 
]*Sqrt[a - I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a - I*a 
*Tan[c + d*x])]/(2*Sqrt[2]*Sqrt[a]*Sqrt[e]))/(2*e))*Sec[c + d*x])/(d*Sqrt[ 
a - I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) - ((4*I)*a*Sqrt[a + I*a* 
Tan[c + d*x]])/(d*Sqrt[e*Sec[c + d*x]])
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3976
Int[Sqrt[(d_.)*sec[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-4*b*(d^2/f)   Subst[Int[x^2/(a^2 + d^2*x^4), x] 
, x, Sqrt[a + b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]]], x] /; FreeQ[{a, b, d, 
e, f}, x] && EqQ[a^2 + b^2, 0]
 

rule 3977
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x 
_)])^(n_), x_Symbol] :> Simp[2*b*(d*Sec[e + f*x])^m*((a + b*Tan[e + f*x])^( 
n - 1)/(f*m)), x] - Simp[b^2*((m + 2*n - 2)/(d^2*m))   Int[(d*Sec[e + f*x]) 
^(m + 2)*(a + b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, d, e, f}, x] 
&& EqQ[a^2 + b^2, 0] && GtQ[n, 1] && ((IGtQ[n/2, 0] && ILtQ[m - 1/2, 0]) || 
 (EqQ[n, 2] && LtQ[m, 0]) || (LeQ[m, -1] && GtQ[m + n, 0]) || (ILtQ[m, 0] & 
& LtQ[m/2 + n - 1, 0] && IntegerQ[n]) || (EqQ[n, 3/2] && EqQ[m, -2^(-1)])) 
&& IntegerQ[2*m]
 

rule 3980
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(3/2)/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_ 
.)*(x_)]], x_Symbol] :> Simp[d*(Sec[e + f*x]/(Sqrt[a - b*Tan[e + f*x]]*Sqrt 
[a + b*Tan[e + f*x]]))   Int[Sqrt[d*Sec[e + f*x]]*Sqrt[a - b*Tan[e + f*x]], 
 x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0]
 
Maple [A] (warning: unable to verify)

Time = 7.57 (sec) , antiderivative size = 286, normalized size of antiderivative = 0.72

method result size
default \(-\frac {\left (-\csc \left (d x +c \right )^{2} \left (1-\cos \left (d x +c \right )\right )^{2}+1\right ) a \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (-4 i+\operatorname {arctanh}\left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}-\operatorname {arctanh}\left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}+i \operatorname {arctanh}\left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}+i \operatorname {arctanh}\left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}+4 \csc \left (d x +c \right )-4 \cot \left (d x +c \right )\right ) \left (-\tan \left (d x +c \right )+i\right )}{d \sqrt {e \sec \left (d x +c \right )}\, \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )+i\right )^{3}}\) \(286\)

Input:

int((a+I*a*tan(d*x+c))^(3/2)/(e*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-1/d*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)*a*(a*(1+I*tan(d*x+c)))^(1/2)/(e*se 
c(d*x+c))^(1/2)*(-4*I+arctanh(1/2/(1/(cos(d*x+c)+1))^(1/2)*(cot(d*x+c)-csc 
(d*x+c)+1))*(1/(cos(d*x+c)+1))^(1/2)-arctanh(1/2/(1/(cos(d*x+c)+1))^(1/2)* 
(-cot(d*x+c)+csc(d*x+c)+1))*(1/(cos(d*x+c)+1))^(1/2)+I*arctanh(1/2/(1/(cos 
(d*x+c)+1))^(1/2)*(cot(d*x+c)-csc(d*x+c)+1))*(1/(cos(d*x+c)+1))^(1/2)+I*ar 
ctanh(1/2/(1/(cos(d*x+c)+1))^(1/2)*(-cot(d*x+c)+csc(d*x+c)+1))*(1/(cos(d*x 
+c)+1))^(1/2)+4*csc(d*x+c)-4*cot(d*x+c))*(-tan(d*x+c)+I)/(cot(d*x+c)-csc(d 
*x+c)+I)^3
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 460, normalized size of antiderivative = 1.16 \[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {e \sec (c+d x)}} \, dx=-\frac {d e \sqrt {\frac {4 i \, a^{3}}{d^{2} e}} \log \left (\frac {2 \, {\left (a e^{\left (2 i \, d x + 2 i \, c\right )} + a\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} + i \, d e \sqrt {\frac {4 i \, a^{3}}{d^{2} e}}}{a}\right ) - d e \sqrt {\frac {4 i \, a^{3}}{d^{2} e}} \log \left (\frac {2 \, {\left (a e^{\left (2 i \, d x + 2 i \, c\right )} + a\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} - i \, d e \sqrt {\frac {4 i \, a^{3}}{d^{2} e}}}{a}\right ) + d e \sqrt {-\frac {4 i \, a^{3}}{d^{2} e}} \log \left (\frac {2 \, {\left (a e^{\left (2 i \, d x + 2 i \, c\right )} + a\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} + i \, d e \sqrt {-\frac {4 i \, a^{3}}{d^{2} e}}}{a}\right ) - d e \sqrt {-\frac {4 i \, a^{3}}{d^{2} e}} \log \left (\frac {2 \, {\left (a e^{\left (2 i \, d x + 2 i \, c\right )} + a\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} - i \, d e \sqrt {-\frac {4 i \, a^{3}}{d^{2} e}}}{a}\right ) + 8 \, {\left (i \, a e^{\left (2 i \, d x + 2 i \, c\right )} + i \, a\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{2 \, d e} \] Input:

integrate((a+I*a*tan(d*x+c))^(3/2)/(e*sec(d*x+c))^(1/2),x, algorithm="fric 
as")
 

Output:

-1/2*(d*e*sqrt(4*I*a^3/(d^2*e))*log((2*(a*e^(2*I*d*x + 2*I*c) + a)*sqrt(a/ 
(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x 
+ 1/2*I*c) + I*d*e*sqrt(4*I*a^3/(d^2*e)))/a) - d*e*sqrt(4*I*a^3/(d^2*e))*l 
og((2*(a*e^(2*I*d*x + 2*I*c) + a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e 
/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c) - I*d*e*sqrt(4*I*a^3/( 
d^2*e)))/a) + d*e*sqrt(-4*I*a^3/(d^2*e))*log((2*(a*e^(2*I*d*x + 2*I*c) + a 
)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1 
/2*I*d*x + 1/2*I*c) + I*d*e*sqrt(-4*I*a^3/(d^2*e)))/a) - d*e*sqrt(-4*I*a^3 
/(d^2*e))*log((2*(a*e^(2*I*d*x + 2*I*c) + a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 
 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c) - I*d*e*sqr 
t(-4*I*a^3/(d^2*e)))/a) + 8*(I*a*e^(2*I*d*x + 2*I*c) + I*a)*sqrt(a/(e^(2*I 
*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I 
*c))/(d*e)
 

Sympy [F]

\[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {e \sec (c+d x)}} \, dx=\int \frac {\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {3}{2}}}{\sqrt {e \sec {\left (c + d x \right )}}}\, dx \] Input:

integrate((a+I*a*tan(d*x+c))**(3/2)/(e*sec(d*x+c))**(1/2),x)
 

Output:

Integral((I*a*(tan(c + d*x) - I))**(3/2)/sqrt(e*sec(c + d*x)), x)
 

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1462 vs. \(2 (300) = 600\).

Time = 0.37 (sec) , antiderivative size = 1462, normalized size of antiderivative = 3.67 \[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {e \sec (c+d x)}} \, dx=\text {Too large to display} \] Input:

integrate((a+I*a*tan(d*x+c))^(3/2)/(e*sec(d*x+c))^(1/2),x, algorithm="maxi 
ma")
 

Output:

1/4*(2*I*sqrt(2)*a*arctan2(sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2 
*d*x + 2*c))) + 1, sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2 
*c))) + 1) + 2*I*sqrt(2)*a*arctan2(sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c 
), cos(2*d*x + 2*c))) + 1, -sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos( 
2*d*x + 2*c))) + 1) + 2*I*sqrt(2)*a*arctan2(sqrt(2)*cos(1/4*arctan2(sin(2* 
d*x + 2*c), cos(2*d*x + 2*c))) - 1, sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2* 
c), cos(2*d*x + 2*c))) + 1) + 2*I*sqrt(2)*a*arctan2(sqrt(2)*cos(1/4*arctan 
2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 1, -sqrt(2)*sin(1/4*arctan2(sin(2 
*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 2*sqrt(2)*a*arctan2(sqrt(2)*sin(1/4 
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x 
+ 2*c), cos(2*d*x + 2*c))), sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos( 
2*d*x + 2*c))) + cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) 
 + 2*sqrt(2)*a*arctan2(-sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d* 
x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))), -sqrt(2 
)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + cos(1/2*arctan2(s 
in(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) + I*sqrt(2)*a*log(2*sqrt(2)*sin(1 
/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/4*arctan2(sin(2*d*x 
+ 2*c), cos(2*d*x + 2*c))) + 2*(sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), 
cos(2*d*x + 2*c))) + 1)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) 
)) + cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*cos(1/4...
 

Giac [F(-2)]

Exception generated. \[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {e \sec (c+d x)}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a+I*a*tan(d*x+c))^(3/2)/(e*sec(d*x+c))^(1/2),x, algorithm="giac 
")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeDone
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {e \sec (c+d x)}} \, dx=\int \frac {{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}}{\sqrt {\frac {e}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int((a + a*tan(c + d*x)*1i)^(3/2)/(e/cos(c + d*x))^(1/2),x)
 

Output:

int((a + a*tan(c + d*x)*1i)^(3/2)/(e/cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {e \sec (c+d x)}} \, dx=\frac {\sqrt {e}\, \sqrt {a}\, a \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )}{\sec \left (d x +c \right )}d x \right ) i +\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}}{\sec \left (d x +c \right )}d x \right )}{e} \] Input:

int((a+I*a*tan(d*x+c))^(3/2)/(e*sec(d*x+c))^(1/2),x)
 

Output:

(sqrt(e)*sqrt(a)*a*(int((sqrt(sec(c + d*x))*sqrt(tan(c + d*x)*i + 1)*tan(c 
 + d*x))/sec(c + d*x),x)*i + int((sqrt(sec(c + d*x))*sqrt(tan(c + d*x)*i + 
 1))/sec(c + d*x),x)))/e