\(\int \frac {(e \sec (c+d x))^{7/3}}{\sqrt {a+i a \tan (c+d x)}} \, dx\) [437]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 30, antiderivative size = 86 \[ \int \frac {(e \sec (c+d x))^{7/3}}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {3 i 2^{2/3} a \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {7}{6},\frac {13}{6},\frac {1}{2} (1-i \tan (c+d x))\right ) (e \sec (c+d x))^{7/3} \sqrt [3]{1+i \tan (c+d x)}}{7 d (a+i a \tan (c+d x))^{3/2}} \] Output:

3/7*I*2^(2/3)*a*hypergeom([1/3, 7/6],[13/6],1/2-1/2*I*tan(d*x+c))*(e*sec(d 
*x+c))^(7/3)*(1+I*tan(d*x+c))^(1/3)/d/(a+I*a*tan(d*x+c))^(3/2)
 

Mathematica [A] (verified)

Time = 1.45 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.37 \[ \int \frac {(e \sec (c+d x))^{7/3}}{\sqrt {a+i a \tan (c+d x)}} \, dx=-\frac {3 i \sqrt [3]{2} e e^{i (c+d x)} \left (\frac {e e^{i (c+d x)}}{1+e^{2 i (c+d x)}}\right )^{4/3} \left (4+\left (1+e^{2 i (c+d x)}\right )^{5/6} \operatorname {Hypergeometric2F1}\left (\frac {2}{3},\frac {5}{6},\frac {5}{3},-e^{2 i (c+d x)}\right )\right )}{5 d \sqrt {a+i a \tan (c+d x)}} \] Input:

Integrate[(e*Sec[c + d*x])^(7/3)/Sqrt[a + I*a*Tan[c + d*x]],x]
 

Output:

(((-3*I)/5)*2^(1/3)*e*E^(I*(c + d*x))*((e*E^(I*(c + d*x)))/(1 + E^((2*I)*( 
c + d*x))))^(4/3)*(4 + (1 + E^((2*I)*(c + d*x)))^(5/6)*Hypergeometric2F1[2 
/3, 5/6, 5/3, -E^((2*I)*(c + d*x))]))/(d*Sqrt[a + I*a*Tan[c + d*x]])
 

Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.233, Rules used = {3042, 3986, 3042, 4006, 80, 27, 79}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e \sec (c+d x))^{7/3}}{\sqrt {a+i a \tan (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(e \sec (c+d x))^{7/3}}{\sqrt {a+i a \tan (c+d x)}}dx\)

\(\Big \downarrow \) 3986

\(\displaystyle \frac {(e \sec (c+d x))^{7/3} \int (a-i a \tan (c+d x))^{7/6} (i \tan (c+d x) a+a)^{2/3}dx}{(a-i a \tan (c+d x))^{7/6} (a+i a \tan (c+d x))^{7/6}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(e \sec (c+d x))^{7/3} \int (a-i a \tan (c+d x))^{7/6} (i \tan (c+d x) a+a)^{2/3}dx}{(a-i a \tan (c+d x))^{7/6} (a+i a \tan (c+d x))^{7/6}}\)

\(\Big \downarrow \) 4006

\(\displaystyle \frac {a^2 (e \sec (c+d x))^{7/3} \int \frac {\sqrt [6]{a-i a \tan (c+d x)}}{\sqrt [3]{i \tan (c+d x) a+a}}d\tan (c+d x)}{d (a-i a \tan (c+d x))^{7/6} (a+i a \tan (c+d x))^{7/6}}\)

\(\Big \downarrow \) 80

\(\displaystyle \frac {a^2 \sqrt [3]{1+i \tan (c+d x)} (e \sec (c+d x))^{7/3} \int \frac {\sqrt [3]{2} \sqrt [6]{a-i a \tan (c+d x)}}{\sqrt [3]{i \tan (c+d x)+1}}d\tan (c+d x)}{\sqrt [3]{2} d (a-i a \tan (c+d x))^{7/6} (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {a^2 \sqrt [3]{1+i \tan (c+d x)} (e \sec (c+d x))^{7/3} \int \frac {\sqrt [6]{a-i a \tan (c+d x)}}{\sqrt [3]{i \tan (c+d x)+1}}d\tan (c+d x)}{d (a-i a \tan (c+d x))^{7/6} (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 79

\(\displaystyle \frac {3 i 2^{2/3} a \sqrt [3]{1+i \tan (c+d x)} (e \sec (c+d x))^{7/3} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {7}{6},\frac {13}{6},\frac {1}{2} (1-i \tan (c+d x))\right )}{7 d (a+i a \tan (c+d x))^{3/2}}\)

Input:

Int[(e*Sec[c + d*x])^(7/3)/Sqrt[a + I*a*Tan[c + d*x]],x]
 

Output:

(((3*I)/7)*2^(2/3)*a*Hypergeometric2F1[1/3, 7/6, 13/6, (1 - I*Tan[c + d*x] 
)/2]*(e*Sec[c + d*x])^(7/3)*(1 + I*Tan[c + d*x])^(1/3))/(d*(a + I*a*Tan[c 
+ d*x])^(3/2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 79
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(( 
a + b*x)^(m + 1)/(b*(m + 1)*(b/(b*c - a*d))^n))*Hypergeometric2F1[-n, m + 1 
, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m, n}, x] 
&&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] 
 ||  !(RationalQ[n] && GtQ[-d/(b*c - a*d), 0]))
 

rule 80
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(c 
 + d*x)^FracPart[n]/((b/(b*c - a*d))^IntPart[n]*(b*((c + d*x)/(b*c - a*d))) 
^FracPart[n])   Int[(a + b*x)^m*Simp[b*(c/(b*c - a*d)) + b*d*(x/(b*c - a*d) 
), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] &&  !IntegerQ[m] &&  !Integ 
erQ[n] && (RationalQ[m] ||  !SimplerQ[n + 1, m + 1])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3986
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*( 
x_)])^(n_.), x_Symbol] :> Simp[(d*Sec[e + f*x])^m/((a + b*Tan[e + f*x])^(m/ 
2)*(a - b*Tan[e + f*x])^(m/2))   Int[(a + b*Tan[e + f*x])^(m/2 + n)*(a - b* 
Tan[e + f*x])^(m/2), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + 
 b^2, 0]
 

rule 4006
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(c/f)   Subst[Int[(a + b*x)^(m - 1)*( 
c + d*x)^(n - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n 
}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]
 
Maple [F]

\[\int \frac {\left (e \sec \left (d x +c \right )\right )^{\frac {7}{3}}}{\sqrt {a +i a \tan \left (d x +c \right )}}d x\]

Input:

int((e*sec(d*x+c))^(7/3)/(a+I*a*tan(d*x+c))^(1/2),x)
 

Output:

int((e*sec(d*x+c))^(7/3)/(a+I*a*tan(d*x+c))^(1/2),x)
 

Fricas [F]

\[ \int \frac {(e \sec (c+d x))^{7/3}}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int { \frac {\left (e \sec \left (d x + c\right )\right )^{\frac {7}{3}}}{\sqrt {i \, a \tan \left (d x + c\right ) + a}} \,d x } \] Input:

integrate((e*sec(d*x+c))^(7/3)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fric 
as")
 

Output:

1/5*(-6*I*2^(5/6)*e^2*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(e/(e^(2*I*d*x + 2 
*I*c) + 1))^(1/3)*e^(4/3*I*d*x + 4/3*I*c) + 5*a*d*integral(-2/5*I*2^(5/6)* 
e^2*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(e/(e^(2*I*d*x + 2*I*c) + 1))^(1/3)* 
e^(1/3*I*d*x + 1/3*I*c)/(a*d), x))/(a*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(e \sec (c+d x))^{7/3}}{\sqrt {a+i a \tan (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate((e*sec(d*x+c))**(7/3)/(a+I*a*tan(d*x+c))**(1/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(e \sec (c+d x))^{7/3}}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int { \frac {\left (e \sec \left (d x + c\right )\right )^{\frac {7}{3}}}{\sqrt {i \, a \tan \left (d x + c\right ) + a}} \,d x } \] Input:

integrate((e*sec(d*x+c))^(7/3)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxi 
ma")
 

Output:

integrate((e*sec(d*x + c))^(7/3)/sqrt(I*a*tan(d*x + c) + a), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {(e \sec (c+d x))^{7/3}}{\sqrt {a+i a \tan (c+d x)}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((e*sec(d*x+c))^(7/3)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac 
")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeDone
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(e \sec (c+d x))^{7/3}}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int \frac {{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{7/3}}{\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}} \,d x \] Input:

int((e/cos(c + d*x))^(7/3)/(a + a*tan(c + d*x)*1i)^(1/2),x)
 

Output:

int((e/cos(c + d*x))^(7/3)/(a + a*tan(c + d*x)*1i)^(1/2), x)
 

Reduce [F]

\[ \int \frac {(e \sec (c+d x))^{7/3}}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {2 e^{\frac {7}{3}} \sqrt {a}\, i \left (-3 \sec \left (d x +c \right )^{\frac {7}{3}} \sqrt {\tan \left (d x +c \right ) i +1}+\left (\int \frac {\sec \left (d x +c \right )^{\frac {7}{3}} \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )}{\tan \left (d x +c \right )^{2}+1}d x \right ) \tan \left (d x +c \right )^{2} d +\left (\int \frac {\sec \left (d x +c \right )^{\frac {7}{3}} \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )}{\tan \left (d x +c \right )^{2}+1}d x \right ) d \right )}{3 a d \left (\tan \left (d x +c \right )^{2}+1\right )} \] Input:

int((e*sec(d*x+c))^(7/3)/(a+I*a*tan(d*x+c))^(1/2),x)
                                                                                    
                                                                                    
 

Output:

(2*e**(1/3)*sqrt(a)*e**2*i*( - 3*sec(c + d*x)**(1/3)*sqrt(tan(c + d*x)*i + 
 1)*sec(c + d*x)**2 + int((sec(c + d*x)**(1/3)*sqrt(tan(c + d*x)*i + 1)*se 
c(c + d*x)**2*tan(c + d*x))/(tan(c + d*x)**2 + 1),x)*tan(c + d*x)**2*d + i 
nt((sec(c + d*x)**(1/3)*sqrt(tan(c + d*x)*i + 1)*sec(c + d*x)**2*tan(c + d 
*x))/(tan(c + d*x)**2 + 1),x)*d))/(3*a*d*(tan(c + d*x)**2 + 1))