\(\int \frac {\sec ^8(c+d x)}{(a+b \tan (c+d x))^3} \, dx\) [574]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 185 \[ \int \frac {\sec ^8(c+d x)}{(a+b \tan (c+d x))^3} \, dx=\frac {3 \left (a^2+b^2\right ) \left (5 a^2+b^2\right ) \log (a+b \tan (c+d x))}{b^7 d}-\frac {a \left (10 a^2+9 b^2\right ) \tan (c+d x)}{b^6 d}+\frac {3 \left (2 a^2+b^2\right ) \tan ^2(c+d x)}{2 b^5 d}-\frac {a \tan ^3(c+d x)}{b^4 d}+\frac {\tan ^4(c+d x)}{4 b^3 d}-\frac {\left (a^2+b^2\right )^3}{2 b^7 d (a+b \tan (c+d x))^2}+\frac {6 a \left (a^2+b^2\right )^2}{b^7 d (a+b \tan (c+d x))} \] Output:

3*(a^2+b^2)*(5*a^2+b^2)*ln(a+b*tan(d*x+c))/b^7/d-a*(10*a^2+9*b^2)*tan(d*x+ 
c)/b^6/d+3/2*(2*a^2+b^2)*tan(d*x+c)^2/b^5/d-a*tan(d*x+c)^3/b^4/d+1/4*tan(d 
*x+c)^4/b^3/d-1/2*(a^2+b^2)^3/b^7/d/(a+b*tan(d*x+c))^2+6*a*(a^2+b^2)^2/b^7 
/d/(a+b*tan(d*x+c))
 

Mathematica [A] (verified)

Time = 0.94 (sec) , antiderivative size = 272, normalized size of antiderivative = 1.47 \[ \int \frac {\sec ^8(c+d x)}{(a+b \tan (c+d x))^3} \, dx=\frac {2 \left (a^2+b^2\right ) \left (19 a^4+16 a^2 b^2-3 b^4+6 a^2 \left (5 a^2+b^2\right ) \log (a+b \tan (c+d x))\right )+b^6 \sec ^6(c+d x)+4 a b \left (4 a^4+17 a^2 b^2+11 b^4+6 \left (5 a^4+6 a^2 b^2+b^4\right ) \log (a+b \tan (c+d x))\right ) \tan (c+d x)+4 b^2 \left (-13 a^4-10 a^2 b^2+3 \left (5 a^4+6 a^2 b^2+b^4\right ) \log (a+b \tan (c+d x))\right ) \tan ^2(c+d x)-20 a b^3 \left (a^2+b^2\right ) \tan ^3(c+d x)+4 a^2 b^4 \tan ^4(c+d x)+b^4 \sec ^4(c+d x) \left (a^2+3 b^2-2 a b \tan (c+d x)\right )}{4 b^7 d (a+b \tan (c+d x))^2} \] Input:

Integrate[Sec[c + d*x]^8/(a + b*Tan[c + d*x])^3,x]
 

Output:

(2*(a^2 + b^2)*(19*a^4 + 16*a^2*b^2 - 3*b^4 + 6*a^2*(5*a^2 + b^2)*Log[a + 
b*Tan[c + d*x]]) + b^6*Sec[c + d*x]^6 + 4*a*b*(4*a^4 + 17*a^2*b^2 + 11*b^4 
 + 6*(5*a^4 + 6*a^2*b^2 + b^4)*Log[a + b*Tan[c + d*x]])*Tan[c + d*x] + 4*b 
^2*(-13*a^4 - 10*a^2*b^2 + 3*(5*a^4 + 6*a^2*b^2 + b^4)*Log[a + b*Tan[c + d 
*x]])*Tan[c + d*x]^2 - 20*a*b^3*(a^2 + b^2)*Tan[c + d*x]^3 + 4*a^2*b^4*Tan 
[c + d*x]^4 + b^4*Sec[c + d*x]^4*(a^2 + 3*b^2 - 2*a*b*Tan[c + d*x]))/(4*b^ 
7*d*(a + b*Tan[c + d*x])^2)
 

Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 160, normalized size of antiderivative = 0.86, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {3042, 3987, 27, 476, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^8(c+d x)}{(a+b \tan (c+d x))^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sec (c+d x)^8}{(a+b \tan (c+d x))^3}dx\)

\(\Big \downarrow \) 3987

\(\displaystyle \frac {\int \frac {\left (\tan ^2(c+d x) b^2+b^2\right )^3}{b^6 (a+b \tan (c+d x))^3}d(b \tan (c+d x))}{b d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\left (\tan ^2(c+d x) b^2+b^2\right )^3}{(a+b \tan (c+d x))^3}d(b \tan (c+d x))}{b^7 d}\)

\(\Big \downarrow \) 476

\(\displaystyle \frac {\int \left (-10 \left (\frac {9 b^2}{10 a^2}+1\right ) a^3-3 b^2 \tan ^2(c+d x) a-\frac {6 \left (a^2+b^2\right )^2 a}{(a+b \tan (c+d x))^2}+b^3 \tan ^3(c+d x)+3 b \left (2 a^2+b^2\right ) \tan (c+d x)+\frac {3 \left (5 a^4+6 b^2 a^2+b^4\right )}{a+b \tan (c+d x)}+\frac {\left (a^2+b^2\right )^3}{(a+b \tan (c+d x))^3}\right )d(b \tan (c+d x))}{b^7 d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {3}{2} b^2 \left (2 a^2+b^2\right ) \tan ^2(c+d x)-a b \left (10 a^2+9 b^2\right ) \tan (c+d x)+\frac {6 a \left (a^2+b^2\right )^2}{a+b \tan (c+d x)}-\frac {\left (a^2+b^2\right )^3}{2 (a+b \tan (c+d x))^2}+3 \left (a^2+b^2\right ) \left (5 a^2+b^2\right ) \log (a+b \tan (c+d x))-a b^3 \tan ^3(c+d x)+\frac {1}{4} b^4 \tan ^4(c+d x)}{b^7 d}\)

Input:

Int[Sec[c + d*x]^8/(a + b*Tan[c + d*x])^3,x]
 

Output:

(3*(a^2 + b^2)*(5*a^2 + b^2)*Log[a + b*Tan[c + d*x]] - a*b*(10*a^2 + 9*b^2 
)*Tan[c + d*x] + (3*b^2*(2*a^2 + b^2)*Tan[c + d*x]^2)/2 - a*b^3*Tan[c + d* 
x]^3 + (b^4*Tan[c + d*x]^4)/4 - (a^2 + b^2)^3/(2*(a + b*Tan[c + d*x])^2) + 
 (6*a*(a^2 + b^2)^2)/(a + b*Tan[c + d*x]))/(b^7*d)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 476
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ 
ExpandIntegrand[(c + d*x)^n*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, n}, 
 x] && IGtQ[p, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3987
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_ 
), x_Symbol] :> Simp[1/(b*f)   Subst[Int[(a + x)^n*(1 + x^2/b^2)^(m/2 - 1), 
 x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, e, f, n}, x] && NeQ[a^2 + b^2, 
0] && IntegerQ[m/2]
 
Maple [A] (verified)

Time = 0.82 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.05

\[\frac {\frac {\frac {\tan \left (d x +c \right )^{4} b^{3}}{4}-\tan \left (d x +c \right )^{3} a \,b^{2}+3 \tan \left (d x +c \right )^{2} a^{2} b +\frac {3 \tan \left (d x +c \right )^{2} b^{3}}{2}-10 a^{3} \tan \left (d x +c \right )-9 \tan \left (d x +c \right ) a \,b^{2}}{b^{6}}+\frac {\left (15 a^{4}+18 b^{2} a^{2}+3 b^{4}\right ) \ln \left (a +b \tan \left (d x +c \right )\right )}{b^{7}}-\frac {a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}}{2 b^{7} \left (a +b \tan \left (d x +c \right )\right )^{2}}+\frac {6 a \left (a^{4}+2 b^{2} a^{2}+b^{4}\right )}{b^{7} \left (a +b \tan \left (d x +c \right )\right )}}{d}\]

Input:

int(sec(d*x+c)^8/(a+b*tan(d*x+c))^3,x)
 

Output:

1/d*(1/b^6*(1/4*tan(d*x+c)^4*b^3-tan(d*x+c)^3*a*b^2+3*tan(d*x+c)^2*a^2*b+3 
/2*tan(d*x+c)^2*b^3-10*a^3*tan(d*x+c)-9*tan(d*x+c)*a*b^2)+(15*a^4+18*a^2*b 
^2+3*b^4)/b^7*ln(a+b*tan(d*x+c))-1/2/b^7*(a^6+3*a^4*b^2+3*a^2*b^4+b^6)/(a+ 
b*tan(d*x+c))^2+6*a/b^7*(a^4+2*a^2*b^2+b^4)/(a+b*tan(d*x+c)))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 476 vs. \(2 (179) = 358\).

Time = 0.14 (sec) , antiderivative size = 476, normalized size of antiderivative = 2.57 \[ \int \frac {\sec ^8(c+d x)}{(a+b \tan (c+d x))^3} \, dx=\frac {8 \, {\left (15 \, a^{4} b^{2} + 13 \, a^{2} b^{4}\right )} \cos \left (d x + c\right )^{6} + b^{6} - 2 \, {\left (45 \, a^{4} b^{2} + 44 \, a^{2} b^{4} + 3 \, b^{6}\right )} \cos \left (d x + c\right )^{4} + {\left (5 \, a^{2} b^{4} + 3 \, b^{6}\right )} \cos \left (d x + c\right )^{2} + 6 \, {\left ({\left (5 \, a^{6} + a^{4} b^{2} - 5 \, a^{2} b^{4} - b^{6}\right )} \cos \left (d x + c\right )^{6} + 2 \, {\left (5 \, a^{5} b + 6 \, a^{3} b^{3} + a b^{5}\right )} \cos \left (d x + c\right )^{5} \sin \left (d x + c\right ) + {\left (5 \, a^{4} b^{2} + 6 \, a^{2} b^{4} + b^{6}\right )} \cos \left (d x + c\right )^{4}\right )} \log \left (2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right ) + {\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + b^{2}\right ) - 6 \, {\left ({\left (5 \, a^{6} + a^{4} b^{2} - 5 \, a^{2} b^{4} - b^{6}\right )} \cos \left (d x + c\right )^{6} + 2 \, {\left (5 \, a^{5} b + 6 \, a^{3} b^{3} + a b^{5}\right )} \cos \left (d x + c\right )^{5} \sin \left (d x + c\right ) + {\left (5 \, a^{4} b^{2} + 6 \, a^{2} b^{4} + b^{6}\right )} \cos \left (d x + c\right )^{4}\right )} \log \left (\cos \left (d x + c\right )^{2}\right ) - 2 \, {\left (a b^{5} \cos \left (d x + c\right ) + 2 \, {\left (15 \, a^{5} b - 2 \, a^{3} b^{3} - 13 \, a b^{5}\right )} \cos \left (d x + c\right )^{5} + 10 \, {\left (a^{3} b^{3} + a b^{5}\right )} \cos \left (d x + c\right )^{3}\right )} \sin \left (d x + c\right )}{4 \, {\left (2 \, a b^{8} d \cos \left (d x + c\right )^{5} \sin \left (d x + c\right ) + b^{9} d \cos \left (d x + c\right )^{4} + {\left (a^{2} b^{7} - b^{9}\right )} d \cos \left (d x + c\right )^{6}\right )}} \] Input:

integrate(sec(d*x+c)^8/(a+b*tan(d*x+c))^3,x, algorithm="fricas")
 

Output:

1/4*(8*(15*a^4*b^2 + 13*a^2*b^4)*cos(d*x + c)^6 + b^6 - 2*(45*a^4*b^2 + 44 
*a^2*b^4 + 3*b^6)*cos(d*x + c)^4 + (5*a^2*b^4 + 3*b^6)*cos(d*x + c)^2 + 6* 
((5*a^6 + a^4*b^2 - 5*a^2*b^4 - b^6)*cos(d*x + c)^6 + 2*(5*a^5*b + 6*a^3*b 
^3 + a*b^5)*cos(d*x + c)^5*sin(d*x + c) + (5*a^4*b^2 + 6*a^2*b^4 + b^6)*co 
s(d*x + c)^4)*log(2*a*b*cos(d*x + c)*sin(d*x + c) + (a^2 - b^2)*cos(d*x + 
c)^2 + b^2) - 6*((5*a^6 + a^4*b^2 - 5*a^2*b^4 - b^6)*cos(d*x + c)^6 + 2*(5 
*a^5*b + 6*a^3*b^3 + a*b^5)*cos(d*x + c)^5*sin(d*x + c) + (5*a^4*b^2 + 6*a 
^2*b^4 + b^6)*cos(d*x + c)^4)*log(cos(d*x + c)^2) - 2*(a*b^5*cos(d*x + c) 
+ 2*(15*a^5*b - 2*a^3*b^3 - 13*a*b^5)*cos(d*x + c)^5 + 10*(a^3*b^3 + a*b^5 
)*cos(d*x + c)^3)*sin(d*x + c))/(2*a*b^8*d*cos(d*x + c)^5*sin(d*x + c) + b 
^9*d*cos(d*x + c)^4 + (a^2*b^7 - b^9)*d*cos(d*x + c)^6)
 

Sympy [F]

\[ \int \frac {\sec ^8(c+d x)}{(a+b \tan (c+d x))^3} \, dx=\int \frac {\sec ^{8}{\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{3}}\, dx \] Input:

integrate(sec(d*x+c)**8/(a+b*tan(d*x+c))**3,x)
 

Output:

Integral(sec(c + d*x)**8/(a + b*tan(c + d*x))**3, x)
 

Maxima [A] (verification not implemented)

Time = 0.03 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.08 \[ \int \frac {\sec ^8(c+d x)}{(a+b \tan (c+d x))^3} \, dx=\frac {\frac {2 \, {\left (11 \, a^{6} + 21 \, a^{4} b^{2} + 9 \, a^{2} b^{4} - b^{6} + 12 \, {\left (a^{5} b + 2 \, a^{3} b^{3} + a b^{5}\right )} \tan \left (d x + c\right )\right )}}{b^{9} \tan \left (d x + c\right )^{2} + 2 \, a b^{8} \tan \left (d x + c\right ) + a^{2} b^{7}} + \frac {b^{3} \tan \left (d x + c\right )^{4} - 4 \, a b^{2} \tan \left (d x + c\right )^{3} + 6 \, {\left (2 \, a^{2} b + b^{3}\right )} \tan \left (d x + c\right )^{2} - 4 \, {\left (10 \, a^{3} + 9 \, a b^{2}\right )} \tan \left (d x + c\right )}{b^{6}} + \frac {12 \, {\left (5 \, a^{4} + 6 \, a^{2} b^{2} + b^{4}\right )} \log \left (b \tan \left (d x + c\right ) + a\right )}{b^{7}}}{4 \, d} \] Input:

integrate(sec(d*x+c)^8/(a+b*tan(d*x+c))^3,x, algorithm="maxima")
 

Output:

1/4*(2*(11*a^6 + 21*a^4*b^2 + 9*a^2*b^4 - b^6 + 12*(a^5*b + 2*a^3*b^3 + a* 
b^5)*tan(d*x + c))/(b^9*tan(d*x + c)^2 + 2*a*b^8*tan(d*x + c) + a^2*b^7) + 
 (b^3*tan(d*x + c)^4 - 4*a*b^2*tan(d*x + c)^3 + 6*(2*a^2*b + b^3)*tan(d*x 
+ c)^2 - 4*(10*a^3 + 9*a*b^2)*tan(d*x + c))/b^6 + 12*(5*a^4 + 6*a^2*b^2 + 
b^4)*log(b*tan(d*x + c) + a)/b^7)/d
 

Giac [A] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 220, normalized size of antiderivative = 1.19 \[ \int \frac {\sec ^8(c+d x)}{(a+b \tan (c+d x))^3} \, dx=\frac {3 \, {\left (5 \, a^{4} + 6 \, a^{2} b^{2} + b^{4}\right )} \log \left ({\left | b \tan \left (d x + c\right ) + a \right |}\right )}{b^{7} d} + \frac {11 \, a^{6} + 21 \, a^{4} b^{2} + 9 \, a^{2} b^{4} - b^{6} + 12 \, {\left (a^{5} b + 2 \, a^{3} b^{3} + a b^{5}\right )} \tan \left (d x + c\right )}{2 \, {\left (b \tan \left (d x + c\right ) + a\right )}^{2} b^{7} d} + \frac {b^{9} d^{3} \tan \left (d x + c\right )^{4} - 4 \, a b^{8} d^{3} \tan \left (d x + c\right )^{3} + 12 \, a^{2} b^{7} d^{3} \tan \left (d x + c\right )^{2} + 6 \, b^{9} d^{3} \tan \left (d x + c\right )^{2} - 40 \, a^{3} b^{6} d^{3} \tan \left (d x + c\right ) - 36 \, a b^{8} d^{3} \tan \left (d x + c\right )}{4 \, b^{12} d^{4}} \] Input:

integrate(sec(d*x+c)^8/(a+b*tan(d*x+c))^3,x, algorithm="giac")
 

Output:

3*(5*a^4 + 6*a^2*b^2 + b^4)*log(abs(b*tan(d*x + c) + a))/(b^7*d) + 1/2*(11 
*a^6 + 21*a^4*b^2 + 9*a^2*b^4 - b^6 + 12*(a^5*b + 2*a^3*b^3 + a*b^5)*tan(d 
*x + c))/((b*tan(d*x + c) + a)^2*b^7*d) + 1/4*(b^9*d^3*tan(d*x + c)^4 - 4* 
a*b^8*d^3*tan(d*x + c)^3 + 12*a^2*b^7*d^3*tan(d*x + c)^2 + 6*b^9*d^3*tan(d 
*x + c)^2 - 40*a^3*b^6*d^3*tan(d*x + c) - 36*a*b^8*d^3*tan(d*x + c))/(b^12 
*d^4)
 

Mupad [B] (verification not implemented)

Time = 0.76 (sec) , antiderivative size = 234, normalized size of antiderivative = 1.26 \[ \int \frac {\sec ^8(c+d x)}{(a+b \tan (c+d x))^3} \, dx=\frac {\frac {11\,a^6+21\,a^4\,b^2+9\,a^2\,b^4-b^6}{2\,b}+\mathrm {tan}\left (c+d\,x\right )\,\left (6\,a^5+12\,a^3\,b^2+6\,a\,b^4\right )}{d\,\left (a^2\,b^6+2\,a\,b^7\,\mathrm {tan}\left (c+d\,x\right )+b^8\,{\mathrm {tan}\left (c+d\,x\right )}^2\right )}+\frac {{\mathrm {tan}\left (c+d\,x\right )}^2\,\left (\frac {3}{2\,b^3}+\frac {3\,a^2}{b^5}\right )}{d}+\frac {{\mathrm {tan}\left (c+d\,x\right )}^4}{4\,b^3\,d}+\frac {\mathrm {tan}\left (c+d\,x\right )\,\left (\frac {8\,a^3}{b^6}-\frac {3\,a\,\left (\frac {3}{b^3}+\frac {6\,a^2}{b^5}\right )}{b}\right )}{d}-\frac {a\,{\mathrm {tan}\left (c+d\,x\right )}^3}{b^4\,d}+\frac {\ln \left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )\,\left (15\,a^4+18\,a^2\,b^2+3\,b^4\right )}{b^7\,d} \] Input:

int(1/(cos(c + d*x)^8*(a + b*tan(c + d*x))^3),x)
 

Output:

((11*a^6 - b^6 + 9*a^2*b^4 + 21*a^4*b^2)/(2*b) + tan(c + d*x)*(6*a*b^4 + 6 
*a^5 + 12*a^3*b^2))/(d*(a^2*b^6 + b^8*tan(c + d*x)^2 + 2*a*b^7*tan(c + d*x 
))) + (tan(c + d*x)^2*(3/(2*b^3) + (3*a^2)/b^5))/d + tan(c + d*x)^4/(4*b^3 
*d) + (tan(c + d*x)*((8*a^3)/b^6 - (3*a*(3/b^3 + (6*a^2)/b^5))/b))/d - (a* 
tan(c + d*x)^3)/(b^4*d) + (log(a + b*tan(c + d*x))*(15*a^4 + 3*b^4 + 18*a^ 
2*b^2))/(b^7*d)
 

Reduce [B] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 13621, normalized size of antiderivative = 73.63 \[ \int \frac {\sec ^8(c+d x)}{(a+b \tan (c+d x))^3} \, dx =\text {Too large to display} \] Input:

int(sec(d*x+c)^8/(a+b*tan(d*x+c))^3,x)
 

Output:

( - 120*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**7*tan(c + d*x 
)**2*a**5*b**3 - 144*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)** 
7*tan(c + d*x)**2*a**3*b**5 - 24*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*si 
n(c + d*x)**7*tan(c + d*x)**2*a*b**7 - 240*cos(c + d*x)*log(tan((c + d*x)/ 
2) - 1)*sin(c + d*x)**7*tan(c + d*x)*a**6*b**2 - 288*cos(c + d*x)*log(tan( 
(c + d*x)/2) - 1)*sin(c + d*x)**7*tan(c + d*x)*a**4*b**4 - 48*cos(c + d*x) 
*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**7*tan(c + d*x)*a**2*b**6 - 120*co 
s(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**7*a**7*b - 144*cos(c + 
d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**7*a**5*b**3 - 24*cos(c + d*x) 
*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**7*a**3*b**5 + 360*cos(c + d*x)*lo 
g(tan((c + d*x)/2) - 1)*sin(c + d*x)**5*tan(c + d*x)**2*a**5*b**3 + 432*co 
s(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**5*tan(c + d*x)**2*a**3* 
b**5 + 72*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**5*tan(c + d 
*x)**2*a*b**7 + 720*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**5 
*tan(c + d*x)*a**6*b**2 + 864*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c 
 + d*x)**5*tan(c + d*x)*a**4*b**4 + 144*cos(c + d*x)*log(tan((c + d*x)/2) 
- 1)*sin(c + d*x)**5*tan(c + d*x)*a**2*b**6 + 360*cos(c + d*x)*log(tan((c 
+ d*x)/2) - 1)*sin(c + d*x)**5*a**7*b + 432*cos(c + d*x)*log(tan((c + d*x) 
/2) - 1)*sin(c + d*x)**5*a**5*b**3 + 72*cos(c + d*x)*log(tan((c + d*x)/2) 
- 1)*sin(c + d*x)**5*a**3*b**5 - 360*cos(c + d*x)*log(tan((c + d*x)/2) ...