\(\int \frac {1}{(e \cos (c+d x))^{5/2} \sqrt {a+i a \tan (c+d x)}} \, dx\) [695]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 30, antiderivative size = 360 \[ \int \frac {1}{(e \cos (c+d x))^{5/2} \sqrt {a+i a \tan (c+d x)}} \, dx=\frac {i e^{5/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} d (e \cos (c+d x))^{5/2} (e \sec (c+d x))^{5/2}}-\frac {i e^{5/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} d (e \cos (c+d x))^{5/2} (e \sec (c+d x))^{5/2}}+\frac {i e^{5/2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)} \left (\sqrt {a}+\cos (c+d x) \left (\sqrt {a}+i \sqrt {a} \tan (c+d x)\right )\right )}\right )}{\sqrt {2} \sqrt {a} d (e \cos (c+d x))^{5/2} (e \sec (c+d x))^{5/2}}-\frac {i \cos ^2(c+d x) \sqrt {a+i a \tan (c+d x)}}{a d (e \cos (c+d x))^{5/2}} \] Output:

1/2*I*e^(5/2)*arctan(1-2^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/a^(1/2)/(e 
*sec(d*x+c))^(1/2))*2^(1/2)/a^(1/2)/d/(e*cos(d*x+c))^(5/2)/(e*sec(d*x+c))^ 
(5/2)-1/2*I*e^(5/2)*arctan(1+2^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/a^(1 
/2)/(e*sec(d*x+c))^(1/2))*2^(1/2)/a^(1/2)/d/(e*cos(d*x+c))^(5/2)/(e*sec(d* 
x+c))^(5/2)+1/2*I*e^(5/2)*arctanh(2^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2) 
/(e*sec(d*x+c))^(1/2)/(a^(1/2)+cos(d*x+c)*(a^(1/2)+I*a^(1/2)*tan(d*x+c)))) 
*2^(1/2)/a^(1/2)/d/(e*cos(d*x+c))^(5/2)/(e*sec(d*x+c))^(5/2)-I*cos(d*x+c)^ 
2*(a+I*a*tan(d*x+c))^(1/2)/a/d/(e*cos(d*x+c))^(5/2)
 

Mathematica [A] (verified)

Time = 1.86 (sec) , antiderivative size = 250, normalized size of antiderivative = 0.69 \[ \int \frac {1}{(e \cos (c+d x))^{5/2} \sqrt {a+i a \tan (c+d x)}} \, dx=\frac {i e^{i c-\frac {i d x}{2}} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \left (-2 e^{\frac {3 i d x}{2}}+\left (-e^{-2 i c}\right )^{3/4} \left (1+e^{2 i (c+d x)}\right ) \arctan \left (\frac {e^{\frac {i d x}{2}}}{\sqrt [4]{-e^{-2 i c}}}\right )-\left (-e^{-2 i c}\right )^{3/4} \left (1+e^{2 i (c+d x)}\right ) \text {arctanh}\left (\frac {e^{\frac {i d x}{2}}}{\sqrt [4]{-e^{-2 i c}}}\right )\right )}{d \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )} \sqrt {\cos (c+d x)} (e \cos (c+d x))^{5/2} \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \] Input:

Integrate[1/((e*Cos[c + d*x])^(5/2)*Sqrt[a + I*a*Tan[c + d*x]]),x]
 

Output:

(I*E^(I*c - (I/2)*d*x)*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*(-2 
*E^(((3*I)/2)*d*x) + (-E^((-2*I)*c))^(3/4)*(1 + E^((2*I)*(c + d*x)))*ArcTa 
n[E^((I/2)*d*x)/(-E^((-2*I)*c))^(1/4)] - (-E^((-2*I)*c))^(3/4)*(1 + E^((2* 
I)*(c + d*x)))*ArcTanh[E^((I/2)*d*x)/(-E^((-2*I)*c))^(1/4)]))/(d*Sqrt[(1 + 
 E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]*Sqrt[Cos[c + d*x]]*(e*Cos[c + d*x]) 
^(5/2)*Sec[c + d*x]^(5/2)*Sqrt[a + I*a*Tan[c + d*x]])
 

Rubi [A] (verified)

Time = 0.84 (sec) , antiderivative size = 400, normalized size of antiderivative = 1.11, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.467, Rules used = {3042, 3998, 3042, 3982, 3042, 3976, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {a+i a \tan (c+d x)} (e \cos (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {a+i a \tan (c+d x)} (e \cos (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 3998

\(\displaystyle \frac {\int \frac {(e \sec (c+d x))^{5/2}}{\sqrt {i \tan (c+d x) a+a}}dx}{(e \cos (c+d x))^{5/2} (e \sec (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {(e \sec (c+d x))^{5/2}}{\sqrt {i \tan (c+d x) a+a}}dx}{(e \cos (c+d x))^{5/2} (e \sec (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3982

\(\displaystyle \frac {\frac {e^2 \int \sqrt {e \sec (c+d x)} \sqrt {i \tan (c+d x) a+a}dx}{2 a}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}}{(e \cos (c+d x))^{5/2} (e \sec (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {e^2 \int \sqrt {e \sec (c+d x)} \sqrt {i \tan (c+d x) a+a}dx}{2 a}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}}{(e \cos (c+d x))^{5/2} (e \sec (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3976

\(\displaystyle \frac {-\frac {2 i e^4 \int \frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e \left (a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2\right )}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{d}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}}{(e \cos (c+d x))^{5/2} (e \sec (c+d x))^{5/2}}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {-\frac {2 i e^4 \left (\frac {\int \frac {a+\cos (c+d x) (i \tan (c+d x) a+a)}{a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (i \tan (c+d x) a+a)}{a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{d}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}}{(e \cos (c+d x))^{5/2} (e \sec (c+d x))^{5/2}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {-\frac {2 i e^4 \left (\frac {\frac {\int \frac {1}{\frac {a}{e}-\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}+\frac {\int \frac {1}{\frac {a}{e}+\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (i \tan (c+d x) a+a)}{a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{d}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}}{(e \cos (c+d x))^{5/2} (e \sec (c+d x))^{5/2}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {-\frac {2 i e^4 \left (\frac {\frac {\int \frac {1}{-\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}-1}d\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\int \frac {1}{-\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}-1}d\left (\frac {\sqrt {2} \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {a} \sqrt {e \sec (c+d x)}}+1\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (i \tan (c+d x) a+a)}{a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{d}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}}{(e \cos (c+d x))^{5/2} (e \sec (c+d x))^{5/2}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {-\frac {2 i e^4 \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (i \tan (c+d x) a+a)}{a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{d}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}}{(e \cos (c+d x))^{5/2} (e \sec (c+d x))^{5/2}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {-\frac {2 i e^4 \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt {a}-\frac {2 \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{\sqrt {e} \left (\frac {a}{e}-\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}\right )}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {a}+\frac {\sqrt {2} \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}\right )}{\sqrt {e} \left (\frac {a}{e}+\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}\right )}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}\right )}{d}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}}{(e \cos (c+d x))^{5/2} (e \sec (c+d x))^{5/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {-\frac {2 i e^4 \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\frac {\int \frac {\sqrt {2} \sqrt {a}-\frac {2 \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{\sqrt {e} \left (\frac {a}{e}-\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}\right )}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {a}+\frac {\sqrt {2} \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}\right )}{\sqrt {e} \left (\frac {a}{e}+\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}\right )}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}\right )}{d}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}}{(e \cos (c+d x))^{5/2} (e \sec (c+d x))^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {2 i e^4 \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\frac {\int \frac {\sqrt {2} \sqrt {a}-\frac {2 \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{\frac {a}{e}-\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} e}+\frac {\int \frac {\sqrt {a}+\frac {\sqrt {2} \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{\frac {a}{e}+\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {a} e}}{2 e}\right )}{d}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}}{(e \cos (c+d x))^{5/2} (e \sec (c+d x))^{5/2}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {-\frac {2 i e^4 \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\frac {\log \left (\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{2 \sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\log \left (-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{2 \sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}\right )}{d}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}}{(e \cos (c+d x))^{5/2} (e \sec (c+d x))^{5/2}}\)

Input:

Int[1/((e*Cos[c + d*x])^(5/2)*Sqrt[a + I*a*Tan[c + d*x]]),x]
 

Output:

(((-2*I)*e^4*((-(ArcTan[1 - (Sqrt[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/( 
Sqrt[a]*Sqrt[e*Sec[c + d*x]])]/(Sqrt[2]*Sqrt[a]*Sqrt[e])) + ArcTan[1 + (Sq 
rt[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x]])]/ 
(Sqrt[2]*Sqrt[a]*Sqrt[e]))/(2*e) - (-1/2*Log[a - (Sqrt[2]*Sqrt[a]*Sqrt[e]* 
Sqrt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a + I*a*T 
an[c + d*x])]/(Sqrt[2]*Sqrt[a]*Sqrt[e]) + Log[a + (Sqrt[2]*Sqrt[a]*Sqrt[e] 
*Sqrt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a + I*a* 
Tan[c + d*x])]/(2*Sqrt[2]*Sqrt[a]*Sqrt[e]))/(2*e)))/d - (I*e^2*Sqrt[e*Sec[ 
c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(a*d))/((e*Cos[c + d*x])^(5/2)*(e*Se 
c[c + d*x])^(5/2))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3976
Int[Sqrt[(d_.)*sec[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-4*b*(d^2/f)   Subst[Int[x^2/(a^2 + d^2*x^4), x] 
, x, Sqrt[a + b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]]], x] /; FreeQ[{a, b, d, 
e, f}, x] && EqQ[a^2 + b^2, 0]
 

rule 3982
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*( 
x_)])^(n_), x_Symbol] :> Simp[d^2*(d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + 
f*x])^(n + 1)/(b*f*(m + n - 1))), x] + Simp[d^2*((m - 2)/(a*(m + n - 1))) 
 Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ 
[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && LtQ[n, 0] && GtQ[m, 1] &&  !IL 
tQ[m + n, 0] && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]
 

rule 3998
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x 
_)])^(n_.), x_Symbol] :> Simp[(d*Cos[e + f*x])^m*(d*Sec[e + f*x])^m   Int[( 
a + b*Tan[e + f*x])^n/(d*Sec[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, m 
, n}, x] &&  !IntegerQ[m]
 
Maple [A] (verified)

Time = 14.76 (sec) , antiderivative size = 299, normalized size of antiderivative = 0.83

method result size
default \(\frac {4 \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \left (\sin \left (d x +c \right )+\tan \left (d x +c \right )\right )-4 i \left (\cos \left (d x +c \right )+1\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}+\left (\cos \left (d x +c \right )-\sin \left (d x +c \right )+1\right ) \operatorname {arctanh}\left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\left (\cos \left (d x +c \right )+\sin \left (d x +c \right )+1\right ) \operatorname {arctanh}\left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}}\right )+i \left (-\cos \left (d x +c \right )+\sin \left (d x +c \right )-1\right ) \operatorname {arctanh}\left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}}\right )+i \left (\cos \left (d x +c \right )+\sin \left (d x +c \right )+1\right ) \operatorname {arctanh}\left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}}\right )}{4 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {e \cos \left (d x +c \right )}\, \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, e^{2}}\) \(299\)

Input:

int(1/(e*cos(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNVERBOS 
E)
 

Output:

1/4/d/(cos(d*x+c)+1)/(e*cos(d*x+c))^(1/2)/(a*(1+I*tan(d*x+c)))^(1/2)/(1/(c 
os(d*x+c)+1))^(1/2)/e^2*(4*(1/(cos(d*x+c)+1))^(1/2)*(sin(d*x+c)+tan(d*x+c) 
)-4*I*(cos(d*x+c)+1)*(1/(cos(d*x+c)+1))^(1/2)+(cos(d*x+c)-sin(d*x+c)+1)*ar 
ctanh(1/2/(1/(cos(d*x+c)+1))^(1/2)*(-cot(d*x+c)+csc(d*x+c)+1))+(cos(d*x+c) 
+sin(d*x+c)+1)*arctanh(1/2*(-cot(d*x+c)+csc(d*x+c)-1)/(1/(cos(d*x+c)+1))^( 
1/2))+I*(-cos(d*x+c)+sin(d*x+c)-1)*arctanh(1/2*(-cot(d*x+c)+csc(d*x+c)-1)/ 
(1/(cos(d*x+c)+1))^(1/2))+I*(cos(d*x+c)+sin(d*x+c)+1)*arctanh(1/2/(1/(cos( 
d*x+c)+1))^(1/2)*(-cot(d*x+c)+csc(d*x+c)+1)))
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 502, normalized size of antiderivative = 1.39 \[ \int \frac {1}{(e \cos (c+d x))^{5/2} \sqrt {a+i a \tan (c+d x)}} \, dx=\frac {-4 i \, \sqrt {2} \sqrt {\frac {1}{2}} \sqrt {e e^{\left (2 i \, d x + 2 i \, c\right )} + e} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {3}{2} i \, d x + \frac {3}{2} i \, c\right )} - {\left (a d e^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + a d e^{3}\right )} \sqrt {\frac {i}{a d^{2} e^{5}}} \log \left (i \, a d e^{3} \sqrt {\frac {i}{a d^{2} e^{5}}} + \sqrt {2} \sqrt {\frac {1}{2}} \sqrt {e e^{\left (2 i \, d x + 2 i \, c\right )} + e} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (-\frac {1}{2} i \, d x - \frac {1}{2} i \, c\right )}\right ) + {\left (a d e^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + a d e^{3}\right )} \sqrt {\frac {i}{a d^{2} e^{5}}} \log \left (-i \, a d e^{3} \sqrt {\frac {i}{a d^{2} e^{5}}} + \sqrt {2} \sqrt {\frac {1}{2}} \sqrt {e e^{\left (2 i \, d x + 2 i \, c\right )} + e} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (-\frac {1}{2} i \, d x - \frac {1}{2} i \, c\right )}\right ) - {\left (a d e^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + a d e^{3}\right )} \sqrt {-\frac {i}{a d^{2} e^{5}}} \log \left (i \, a d e^{3} \sqrt {-\frac {i}{a d^{2} e^{5}}} + \sqrt {2} \sqrt {\frac {1}{2}} \sqrt {e e^{\left (2 i \, d x + 2 i \, c\right )} + e} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (-\frac {1}{2} i \, d x - \frac {1}{2} i \, c\right )}\right ) + {\left (a d e^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + a d e^{3}\right )} \sqrt {-\frac {i}{a d^{2} e^{5}}} \log \left (-i \, a d e^{3} \sqrt {-\frac {i}{a d^{2} e^{5}}} + \sqrt {2} \sqrt {\frac {1}{2}} \sqrt {e e^{\left (2 i \, d x + 2 i \, c\right )} + e} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (-\frac {1}{2} i \, d x - \frac {1}{2} i \, c\right )}\right )}{2 \, {\left (a d e^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + a d e^{3}\right )}} \] Input:

integrate(1/(e*cos(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fr 
icas")
 

Output:

1/2*(-4*I*sqrt(2)*sqrt(1/2)*sqrt(e*e^(2*I*d*x + 2*I*c) + e)*sqrt(a/(e^(2*I 
*d*x + 2*I*c) + 1))*e^(3/2*I*d*x + 3/2*I*c) - (a*d*e^3*e^(2*I*d*x + 2*I*c) 
 + a*d*e^3)*sqrt(I/(a*d^2*e^5))*log(I*a*d*e^3*sqrt(I/(a*d^2*e^5)) + sqrt(2 
)*sqrt(1/2)*sqrt(e*e^(2*I*d*x + 2*I*c) + e)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 
1))*e^(-1/2*I*d*x - 1/2*I*c)) + (a*d*e^3*e^(2*I*d*x + 2*I*c) + a*d*e^3)*sq 
rt(I/(a*d^2*e^5))*log(-I*a*d*e^3*sqrt(I/(a*d^2*e^5)) + sqrt(2)*sqrt(1/2)*s 
qrt(e*e^(2*I*d*x + 2*I*c) + e)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(-1/2*I 
*d*x - 1/2*I*c)) - (a*d*e^3*e^(2*I*d*x + 2*I*c) + a*d*e^3)*sqrt(-I/(a*d^2* 
e^5))*log(I*a*d*e^3*sqrt(-I/(a*d^2*e^5)) + sqrt(2)*sqrt(1/2)*sqrt(e*e^(2*I 
*d*x + 2*I*c) + e)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(-1/2*I*d*x - 1/2*I 
*c)) + (a*d*e^3*e^(2*I*d*x + 2*I*c) + a*d*e^3)*sqrt(-I/(a*d^2*e^5))*log(-I 
*a*d*e^3*sqrt(-I/(a*d^2*e^5)) + sqrt(2)*sqrt(1/2)*sqrt(e*e^(2*I*d*x + 2*I* 
c) + e)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(-1/2*I*d*x - 1/2*I*c)))/(a*d* 
e^3*e^(2*I*d*x + 2*I*c) + a*d*e^3)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(e \cos (c+d x))^{5/2} \sqrt {a+i a \tan (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate(1/(e*cos(d*x+c))**(5/2)/(a+I*a*tan(d*x+c))**(1/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 2147 vs. \(2 (274) = 548\).

Time = 0.42 (sec) , antiderivative size = 2147, normalized size of antiderivative = 5.96 \[ \int \frac {1}{(e \cos (c+d x))^{5/2} \sqrt {a+i a \tan (c+d x)}} \, dx=\text {Too large to display} \] Input:

integrate(1/(e*cos(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="ma 
xima")
 

Output:

-8*(2*(sqrt(2)*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)) 
) + I*sqrt(2)*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) 
 + sqrt(2))*arctan2(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2* 
d*x + 3/2*c))) + 1, sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2* 
d*x + 3/2*c))) + 1) + 2*(sqrt(2)*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos 
(3/2*d*x + 3/2*c))) + I*sqrt(2)*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos( 
3/2*d*x + 3/2*c))) + sqrt(2))*arctan2(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x 
+ 3/2*c), cos(3/2*d*x + 3/2*c))) + 1, -sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x 
 + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) + 2*(sqrt(2)*cos(4/3*arctan2(sin(3/ 
2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + I*sqrt(2)*sin(4/3*arctan2(sin(3/2 
*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + sqrt(2))*arctan2(sqrt(2)*cos(1/3*a 
rctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 1, sqrt(2)*sin(1/3*a 
rctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) + 2*(sqrt(2)*cos( 
4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + I*sqrt(2)*sin(4 
/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + sqrt(2))*arctan2 
(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 1, 
 -sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1 
) + 2*(-I*sqrt(2)*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2* 
c))) + sqrt(2)*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)) 
) - I*sqrt(2))*arctan2(sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), co...
 

Giac [F(-2)]

Exception generated. \[ \int \frac {1}{(e \cos (c+d x))^{5/2} \sqrt {a+i a \tan (c+d x)}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(1/(e*cos(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="gi 
ac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeDone
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(e \cos (c+d x))^{5/2} \sqrt {a+i a \tan (c+d x)}} \, dx=\int \frac {1}{{\left (e\,\cos \left (c+d\,x\right )\right )}^{5/2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}} \,d x \] Input:

int(1/((e*cos(c + d*x))^(5/2)*(a + a*tan(c + d*x)*1i)^(1/2)),x)
 

Output:

int(1/((e*cos(c + d*x))^(5/2)*(a + a*tan(c + d*x)*1i)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {1}{(e \cos (c+d x))^{5/2} \sqrt {a+i a \tan (c+d x)}} \, dx=\frac {\sqrt {e}\, \sqrt {a}\, \left (-\left (\int \frac {\sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cos \left (d x +c \right )}\, \tan \left (d x +c \right )}{\cos \left (d x +c \right )^{3} \tan \left (d x +c \right )^{2}+\cos \left (d x +c \right )^{3}}d x \right ) i +\int \frac {\sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3} \tan \left (d x +c \right )^{2}+\cos \left (d x +c \right )^{3}}d x \right )}{a \,e^{3}} \] Input:

int(1/(e*cos(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(1/2),x)
 

Output:

(sqrt(e)*sqrt(a)*( - int((sqrt(tan(c + d*x)*i + 1)*sqrt(cos(c + d*x))*tan( 
c + d*x))/(cos(c + d*x)**3*tan(c + d*x)**2 + cos(c + d*x)**3),x)*i + int(( 
sqrt(tan(c + d*x)*i + 1)*sqrt(cos(c + d*x)))/(cos(c + d*x)**3*tan(c + d*x) 
**2 + cos(c + d*x)**3),x)))/(a*e**3)