\(\int \frac {(c-i c \tan (e+f x))^{5/2}}{(a+i a \tan (e+f x))^{3/2}} \, dx\) [1011]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 155 \[ \int \frac {(c-i c \tan (e+f x))^{5/2}}{(a+i a \tan (e+f x))^{3/2}} \, dx=-\frac {2 i c^{5/2} \arctan \left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{a^{3/2} f}-\frac {2 i c^2 \sqrt {c-i c \tan (e+f x)}}{a f \sqrt {a+i a \tan (e+f x)}}+\frac {2 i c (c-i c \tan (e+f x))^{3/2}}{3 f (a+i a \tan (e+f x))^{3/2}} \] Output:

-2*I*c^(5/2)*arctan(c^(1/2)*(a+I*a*tan(f*x+e))^(1/2)/a^(1/2)/(c-I*c*tan(f* 
x+e))^(1/2))/a^(3/2)/f-2*I*c^2*(c-I*c*tan(f*x+e))^(1/2)/a/f/(a+I*a*tan(f*x 
+e))^(1/2)+2/3*I*c*(c-I*c*tan(f*x+e))^(3/2)/f/(a+I*a*tan(f*x+e))^(3/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 1.10 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.57 \[ \int \frac {(c-i c \tan (e+f x))^{5/2}}{(a+i a \tan (e+f x))^{3/2}} \, dx=\frac {4 i c^3 \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},-\frac {3}{2},-\frac {1}{2},\frac {1}{2} (1+i \tan (e+f x))\right ) \sqrt {2-2 i \tan (e+f x)}}{3 f (a+i a \tan (e+f x))^{3/2} \sqrt {c-i c \tan (e+f x)}} \] Input:

Integrate[(c - I*c*Tan[e + f*x])^(5/2)/(a + I*a*Tan[e + f*x])^(3/2),x]
 

Output:

(((4*I)/3)*c^3*Hypergeometric2F1[-3/2, -3/2, -1/2, (1 + I*Tan[e + f*x])/2] 
*Sqrt[2 - (2*I)*Tan[e + f*x]])/(f*(a + I*a*Tan[e + f*x])^(3/2)*Sqrt[c - I* 
c*Tan[e + f*x]])
 

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.02, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {3042, 4006, 57, 57, 45, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c-i c \tan (e+f x))^{5/2}}{(a+i a \tan (e+f x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(c-i c \tan (e+f x))^{5/2}}{(a+i a \tan (e+f x))^{3/2}}dx\)

\(\Big \downarrow \) 4006

\(\displaystyle \frac {a c \int \frac {(c-i c \tan (e+f x))^{3/2}}{(i \tan (e+f x) a+a)^{5/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 57

\(\displaystyle \frac {a c \left (\frac {2 i (c-i c \tan (e+f x))^{3/2}}{3 a (a+i a \tan (e+f x))^{3/2}}-\frac {c \int \frac {\sqrt {c-i c \tan (e+f x)}}{(i \tan (e+f x) a+a)^{3/2}}d\tan (e+f x)}{a}\right )}{f}\)

\(\Big \downarrow \) 57

\(\displaystyle \frac {a c \left (\frac {2 i (c-i c \tan (e+f x))^{3/2}}{3 a (a+i a \tan (e+f x))^{3/2}}-\frac {c \left (\frac {2 i \sqrt {c-i c \tan (e+f x)}}{a \sqrt {a+i a \tan (e+f x)}}-\frac {c \int \frac {1}{\sqrt {i \tan (e+f x) a+a} \sqrt {c-i c \tan (e+f x)}}d\tan (e+f x)}{a}\right )}{a}\right )}{f}\)

\(\Big \downarrow \) 45

\(\displaystyle \frac {a c \left (\frac {2 i (c-i c \tan (e+f x))^{3/2}}{3 a (a+i a \tan (e+f x))^{3/2}}-\frac {c \left (\frac {2 i \sqrt {c-i c \tan (e+f x)}}{a \sqrt {a+i a \tan (e+f x)}}-\frac {2 c \int \frac {1}{i a+\frac {i c (i \tan (e+f x) a+a)}{c-i c \tan (e+f x)}}d\frac {\sqrt {i \tan (e+f x) a+a}}{\sqrt {c-i c \tan (e+f x)}}}{a}\right )}{a}\right )}{f}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {a c \left (\frac {2 i (c-i c \tan (e+f x))^{3/2}}{3 a (a+i a \tan (e+f x))^{3/2}}-\frac {c \left (\frac {2 i \sqrt {c} \arctan \left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{a^{3/2}}+\frac {2 i \sqrt {c-i c \tan (e+f x)}}{a \sqrt {a+i a \tan (e+f x)}}\right )}{a}\right )}{f}\)

Input:

Int[(c - I*c*Tan[e + f*x])^(5/2)/(a + I*a*Tan[e + f*x])^(3/2),x]
 

Output:

(a*c*((((2*I)/3)*(c - I*c*Tan[e + f*x])^(3/2))/(a*(a + I*a*Tan[e + f*x])^( 
3/2)) - (c*(((2*I)*Sqrt[c]*ArcTan[(Sqrt[c]*Sqrt[a + I*a*Tan[e + f*x]])/(Sq 
rt[a]*Sqrt[c - I*c*Tan[e + f*x]])])/a^(3/2) + ((2*I)*Sqrt[c - I*c*Tan[e + 
f*x]])/(a*Sqrt[a + I*a*Tan[e + f*x]])))/a))/f
 

Defintions of rubi rules used

rule 45
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ 
2   Subst[Int[1/(b - d*x^2), x], x, Sqrt[a + b*x]/Sqrt[c + d*x]], x] /; Fre 
eQ[{a, b, c, d}, x] && EqQ[b*c + a*d, 0] &&  !GtQ[c, 0]
 

rule 57
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + 1))), x] - Simp[d*(n/(b*(m + 1))) 
Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d}, x] & 
& GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m 
+ n + 2, 0] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c 
, d, m, n, x]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4006
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(c/f)   Subst[Int[(a + b*x)^(m - 1)*( 
c + d*x)^(n - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n 
}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 349 vs. \(2 (124 ) = 248\).

Time = 0.31 (sec) , antiderivative size = 350, normalized size of antiderivative = 2.26

method result size
derivativedivides \(\frac {\sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, c^{2} \left (9 i \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )^{2}-3 \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )^{3}-3 i \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}}{\sqrt {a c}}\right ) a c -12 i \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )+9 \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )+8 \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )^{2}-4 \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}\right )}{3 f \,a^{2} \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \left (-\tan \left (f x +e \right )+i\right )^{3} \sqrt {a c}}\) \(350\)
default \(\frac {\sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, c^{2} \left (9 i \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )^{2}-3 \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )^{3}-3 i \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}}{\sqrt {a c}}\right ) a c -12 i \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )+9 \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )+8 \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )^{2}-4 \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}\right )}{3 f \,a^{2} \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \left (-\tan \left (f x +e \right )+i\right )^{3} \sqrt {a c}}\) \(350\)

Input:

int((c-I*c*tan(f*x+e))^(5/2)/(a+I*a*tan(f*x+e))^(3/2),x,method=_RETURNVERB 
OSE)
 

Output:

1/3/f*(-c*(I*tan(f*x+e)-1))^(1/2)*(a*(1+I*tan(f*x+e)))^(1/2)*c^2/a^2*(9*I* 
ln((a*c*tan(f*x+e)+(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2))/(a*c)^(1/2))* 
a*c*tan(f*x+e)^2-3*ln((a*c*tan(f*x+e)+(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^( 
1/2))/(a*c)^(1/2))*a*c*tan(f*x+e)^3-3*I*ln((a*c*tan(f*x+e)+(a*c*(1+tan(f*x 
+e)^2))^(1/2)*(a*c)^(1/2))/(a*c)^(1/2))*a*c-12*I*(a*c)^(1/2)*(a*c*(1+tan(f 
*x+e)^2))^(1/2)*tan(f*x+e)+9*ln((a*c*tan(f*x+e)+(a*c*(1+tan(f*x+e)^2))^(1/ 
2)*(a*c)^(1/2))/(a*c)^(1/2))*a*c*tan(f*x+e)+8*(a*c)^(1/2)*(a*c*(1+tan(f*x+ 
e)^2))^(1/2)*tan(f*x+e)^2-4*(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2))/(a*c 
*(1+tan(f*x+e)^2))^(1/2)/(-tan(f*x+e)+I)^3/(a*c)^(1/2)
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 386 vs. \(2 (115) = 230\).

Time = 0.10 (sec) , antiderivative size = 386, normalized size of antiderivative = 2.49 \[ \int \frac {(c-i c \tan (e+f x))^{5/2}}{(a+i a \tan (e+f x))^{3/2}} \, dx=\frac {{\left (3 \, a^{2} f \sqrt {\frac {c^{5}}{a^{3} f^{2}}} e^{\left (3 i \, f x + 3 i \, e\right )} \log \left (\frac {4 \, {\left (2 \, {\left (c^{2} e^{\left (3 i \, f x + 3 i \, e\right )} + c^{2} e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} - {\left (i \, a^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} - i \, a^{2} f\right )} \sqrt {\frac {c^{5}}{a^{3} f^{2}}}\right )}}{c^{2} e^{\left (2 i \, f x + 2 i \, e\right )} + c^{2}}\right ) - 3 \, a^{2} f \sqrt {\frac {c^{5}}{a^{3} f^{2}}} e^{\left (3 i \, f x + 3 i \, e\right )} \log \left (\frac {4 \, {\left (2 \, {\left (c^{2} e^{\left (3 i \, f x + 3 i \, e\right )} + c^{2} e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} - {\left (-i \, a^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} + i \, a^{2} f\right )} \sqrt {\frac {c^{5}}{a^{3} f^{2}}}\right )}}{c^{2} e^{\left (2 i \, f x + 2 i \, e\right )} + c^{2}}\right ) - 4 \, {\left (3 i \, c^{2} e^{\left (4 i \, f x + 4 i \, e\right )} + 2 i \, c^{2} e^{\left (2 i \, f x + 2 i \, e\right )} - i \, c^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}\right )} e^{\left (-3 i \, f x - 3 i \, e\right )}}{6 \, a^{2} f} \] Input:

integrate((c-I*c*tan(f*x+e))^(5/2)/(a+I*a*tan(f*x+e))^(3/2),x, algorithm=" 
fricas")
 

Output:

1/6*(3*a^2*f*sqrt(c^5/(a^3*f^2))*e^(3*I*f*x + 3*I*e)*log(4*(2*(c^2*e^(3*I* 
f*x + 3*I*e) + c^2*e^(I*f*x + I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt 
(c/(e^(2*I*f*x + 2*I*e) + 1)) - (I*a^2*f*e^(2*I*f*x + 2*I*e) - I*a^2*f)*sq 
rt(c^5/(a^3*f^2)))/(c^2*e^(2*I*f*x + 2*I*e) + c^2)) - 3*a^2*f*sqrt(c^5/(a^ 
3*f^2))*e^(3*I*f*x + 3*I*e)*log(4*(2*(c^2*e^(3*I*f*x + 3*I*e) + c^2*e^(I*f 
*x + I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 
 1)) - (-I*a^2*f*e^(2*I*f*x + 2*I*e) + I*a^2*f)*sqrt(c^5/(a^3*f^2)))/(c^2* 
e^(2*I*f*x + 2*I*e) + c^2)) - 4*(3*I*c^2*e^(4*I*f*x + 4*I*e) + 2*I*c^2*e^( 
2*I*f*x + 2*I*e) - I*c^2)*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I 
*f*x + 2*I*e) + 1)))*e^(-3*I*f*x - 3*I*e)/(a^2*f)
 

Sympy [F]

\[ \int \frac {(c-i c \tan (e+f x))^{5/2}}{(a+i a \tan (e+f x))^{3/2}} \, dx=\int \frac {\left (- i c \left (\tan {\left (e + f x \right )} + i\right )\right )^{\frac {5}{2}}}{\left (i a \left (\tan {\left (e + f x \right )} - i\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((c-I*c*tan(f*x+e))**(5/2)/(a+I*a*tan(f*x+e))**(3/2),x)
 

Output:

Integral((-I*c*(tan(e + f*x) + I))**(5/2)/(I*a*(tan(e + f*x) - I))**(3/2), 
 x)
 

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 410 vs. \(2 (115) = 230\).

Time = 0.22 (sec) , antiderivative size = 410, normalized size of antiderivative = 2.65 \[ \int \frac {(c-i c \tan (e+f x))^{5/2}}{(a+i a \tan (e+f x))^{3/2}} \, dx =\text {Too large to display} \] Input:

integrate((c-I*c*tan(f*x+e))^(5/2)/(a+I*a*tan(f*x+e))^(3/2),x, algorithm=" 
maxima")
 

Output:

1/6*(-6*I*c^2*arctan2(cos(1/3*arctan2(sin(3*f*x + 3*e), cos(3*f*x + 3*e))) 
, sin(1/3*arctan2(sin(3*f*x + 3*e), cos(3*f*x + 3*e))) + 1) - 6*I*c^2*arct 
an2(cos(1/3*arctan2(sin(3*f*x + 3*e), cos(3*f*x + 3*e))), -sin(1/3*arctan2 
(sin(3*f*x + 3*e), cos(3*f*x + 3*e))) + 1) + 4*I*c^2*cos(3*f*x + 3*e) + 3* 
c^2*log(cos(1/3*arctan2(sin(3*f*x + 3*e), cos(3*f*x + 3*e)))^2 + sin(1/3*a 
rctan2(sin(3*f*x + 3*e), cos(3*f*x + 3*e)))^2 + 2*sin(1/3*arctan2(sin(3*f* 
x + 3*e), cos(3*f*x + 3*e))) + 1) - 3*c^2*log(cos(1/3*arctan2(sin(3*f*x + 
3*e), cos(3*f*x + 3*e)))^2 + sin(1/3*arctan2(sin(3*f*x + 3*e), cos(3*f*x + 
 3*e)))^2 - 2*sin(1/3*arctan2(sin(3*f*x + 3*e), cos(3*f*x + 3*e))) + 1) + 
4*c^2*sin(3*f*x + 3*e) - 12*(I*c^2*cos(3*f*x + 3*e) + c^2*sin(3*f*x + 3*e) 
)*cos(2/3*arctan2(sin(3*f*x + 3*e), cos(3*f*x + 3*e))) + 12*(c^2*cos(3*f*x 
 + 3*e) - I*c^2*sin(3*f*x + 3*e))*sin(2/3*arctan2(sin(3*f*x + 3*e), cos(3* 
f*x + 3*e))))*sqrt(c)/(a^(3/2)*f)
 

Giac [F]

\[ \int \frac {(c-i c \tan (e+f x))^{5/2}}{(a+i a \tan (e+f x))^{3/2}} \, dx=\int { \frac {{\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {5}{2}}}{{\left (i \, a \tan \left (f x + e\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((c-I*c*tan(f*x+e))^(5/2)/(a+I*a*tan(f*x+e))^(3/2),x, algorithm=" 
giac")
 

Output:

integrate((-I*c*tan(f*x + e) + c)^(5/2)/(I*a*tan(f*x + e) + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(c-i c \tan (e+f x))^{5/2}}{(a+i a \tan (e+f x))^{3/2}} \, dx=\int \frac {{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{5/2}}{{\left (a+a\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{3/2}} \,d x \] Input:

int((c - c*tan(e + f*x)*1i)^(5/2)/(a + a*tan(e + f*x)*1i)^(3/2),x)
 

Output:

int((c - c*tan(e + f*x)*1i)^(5/2)/(a + a*tan(e + f*x)*1i)^(3/2), x)
 

Reduce [F]

\[ \int \frac {(c-i c \tan (e+f x))^{5/2}}{(a+i a \tan (e+f x))^{3/2}} \, dx=\frac {\sqrt {c}\, \sqrt {a}\, c^{2} \left (-6 \sqrt {\tan \left (f x +e \right ) i +1}\, \sqrt {-\tan \left (f x +e \right ) i +1}\, \tan \left (f x +e \right )-3 \sqrt {\tan \left (f x +e \right ) i +1}\, \sqrt {-\tan \left (f x +e \right ) i +1}\, i +3 \left (\int -\frac {\sqrt {\tan \left (f x +e \right ) i +1}\, \sqrt {-\tan \left (f x +e \right ) i +1}}{\tan \left (f x +e \right )^{3}-\tan \left (f x +e \right )^{2} i +\tan \left (f x +e \right )-i}d x \right ) \tan \left (f x +e \right )^{2} f i +3 \left (\int -\frac {\sqrt {\tan \left (f x +e \right ) i +1}\, \sqrt {-\tan \left (f x +e \right ) i +1}}{\tan \left (f x +e \right )^{3}-\tan \left (f x +e \right )^{2} i +\tan \left (f x +e \right )-i}d x \right ) f i +\left (\int \frac {\sqrt {\tan \left (f x +e \right ) i +1}\, \sqrt {-\tan \left (f x +e \right ) i +1}\, \tan \left (f x +e \right )^{3}}{\tan \left (f x +e \right )^{3} i +\tan \left (f x +e \right )^{2}+\tan \left (f x +e \right ) i +1}d x \right ) \tan \left (f x +e \right )^{2} f i +\left (\int \frac {\sqrt {\tan \left (f x +e \right ) i +1}\, \sqrt {-\tan \left (f x +e \right ) i +1}\, \tan \left (f x +e \right )^{3}}{\tan \left (f x +e \right )^{3} i +\tan \left (f x +e \right )^{2}+\tan \left (f x +e \right ) i +1}d x \right ) f i +4 \left (\int \frac {\sqrt {\tan \left (f x +e \right ) i +1}\, \sqrt {-\tan \left (f x +e \right ) i +1}}{\tan \left (f x +e \right )^{3} i +\tan \left (f x +e \right )^{2}+\tan \left (f x +e \right ) i +1}d x \right ) \tan \left (f x +e \right )^{2} f +4 \left (\int \frac {\sqrt {\tan \left (f x +e \right ) i +1}\, \sqrt {-\tan \left (f x +e \right ) i +1}}{\tan \left (f x +e \right )^{3} i +\tan \left (f x +e \right )^{2}+\tan \left (f x +e \right ) i +1}d x \right ) f \right )}{a^{2} f \left (\tan \left (f x +e \right )^{2}+1\right )} \] Input:

int((c-I*c*tan(f*x+e))^(5/2)/(a+I*a*tan(f*x+e))^(3/2),x)
 

Output:

(sqrt(c)*sqrt(a)*c**2*( - 6*sqrt(tan(e + f*x)*i + 1)*sqrt( - tan(e + f*x)* 
i + 1)*tan(e + f*x) - 3*sqrt(tan(e + f*x)*i + 1)*sqrt( - tan(e + f*x)*i + 
1)*i + 3*int(( - sqrt(tan(e + f*x)*i + 1)*sqrt( - tan(e + f*x)*i + 1))/(ta 
n(e + f*x)**3 - tan(e + f*x)**2*i + tan(e + f*x) - i),x)*tan(e + f*x)**2*f 
*i + 3*int(( - sqrt(tan(e + f*x)*i + 1)*sqrt( - tan(e + f*x)*i + 1))/(tan( 
e + f*x)**3 - tan(e + f*x)**2*i + tan(e + f*x) - i),x)*f*i + int((sqrt(tan 
(e + f*x)*i + 1)*sqrt( - tan(e + f*x)*i + 1)*tan(e + f*x)**3)/(tan(e + f*x 
)**3*i + tan(e + f*x)**2 + tan(e + f*x)*i + 1),x)*tan(e + f*x)**2*f*i + in 
t((sqrt(tan(e + f*x)*i + 1)*sqrt( - tan(e + f*x)*i + 1)*tan(e + f*x)**3)/( 
tan(e + f*x)**3*i + tan(e + f*x)**2 + tan(e + f*x)*i + 1),x)*f*i + 4*int(( 
sqrt(tan(e + f*x)*i + 1)*sqrt( - tan(e + f*x)*i + 1))/(tan(e + f*x)**3*i + 
 tan(e + f*x)**2 + tan(e + f*x)*i + 1),x)*tan(e + f*x)**2*f + 4*int((sqrt( 
tan(e + f*x)*i + 1)*sqrt( - tan(e + f*x)*i + 1))/(tan(e + f*x)**3*i + tan( 
e + f*x)**2 + tan(e + f*x)*i + 1),x)*f))/(a**2*f*(tan(e + f*x)**2 + 1))