\(\int \frac {\sqrt {c+d \tan (e+f x)}}{(a+i a \tan (e+f x))^{3/2}} \, dx\) [1141]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 32, antiderivative size = 177 \[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+i a \tan (e+f x))^{3/2}} \, dx=-\frac {i \sqrt {c-i d} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {a} \sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d} \sqrt {a+i a \tan (e+f x)}}\right )}{2 \sqrt {2} a^{3/2} f}+\frac {i \sqrt {c+d \tan (e+f x)}}{2 a f \sqrt {a+i a \tan (e+f x)}}-\frac {(c+d \tan (e+f x))^{3/2}}{3 (i c-d) f (a+i a \tan (e+f x))^{3/2}} \] Output:

-1/4*I*(c-I*d)^(1/2)*arctanh(2^(1/2)*a^(1/2)*(c+d*tan(f*x+e))^(1/2)/(c-I*d 
)^(1/2)/(a+I*a*tan(f*x+e))^(1/2))*2^(1/2)/a^(3/2)/f+1/2*I*(c+d*tan(f*x+e)) 
^(1/2)/a/f/(a+I*a*tan(f*x+e))^(1/2)-1/3*(c+d*tan(f*x+e))^(3/2)/(I*c-d)/f/( 
a+I*a*tan(f*x+e))^(3/2)
 

Mathematica [A] (verified)

Time = 1.15 (sec) , antiderivative size = 175, normalized size of antiderivative = 0.99 \[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+i a \tan (e+f x))^{3/2}} \, dx=\frac {-\frac {3 i \sqrt {2} \left (c^2+d^2\right ) \arctan \left (\frac {\sqrt {-a (c-i d)} \sqrt {a+i a \tan (e+f x)}}{\sqrt {2} a \sqrt {c+d \tan (e+f x)}}\right )}{\sqrt {-a (c-i d)}}+\frac {2 (5 c+3 i d+(3 i c-d) \tan (e+f x)) \sqrt {c+d \tan (e+f x)}}{(-i+\tan (e+f x)) \sqrt {a+i a \tan (e+f x)}}}{12 a (c+i d) f} \] Input:

Integrate[Sqrt[c + d*Tan[e + f*x]]/(a + I*a*Tan[e + f*x])^(3/2),x]
 

Output:

(((-3*I)*Sqrt[2]*(c^2 + d^2)*ArcTan[(Sqrt[-(a*(c - I*d))]*Sqrt[a + I*a*Tan 
[e + f*x]])/(Sqrt[2]*a*Sqrt[c + d*Tan[e + f*x]])])/Sqrt[-(a*(c - I*d))] + 
(2*(5*c + (3*I)*d + ((3*I)*c - d)*Tan[e + f*x])*Sqrt[c + d*Tan[e + f*x]])/ 
((-I + Tan[e + f*x])*Sqrt[a + I*a*Tan[e + f*x]]))/(12*a*(c + I*d)*f)
 

Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.01, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.219, Rules used = {3042, 4030, 3042, 4029, 3042, 4027, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+i a \tan (e+f x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+i a \tan (e+f x))^{3/2}}dx\)

\(\Big \downarrow \) 4030

\(\displaystyle \frac {\int \frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {i \tan (e+f x) a+a}}dx}{2 a}-\frac {(c+d \tan (e+f x))^{3/2}}{3 f (-d+i c) (a+i a \tan (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {i \tan (e+f x) a+a}}dx}{2 a}-\frac {(c+d \tan (e+f x))^{3/2}}{3 f (-d+i c) (a+i a \tan (e+f x))^{3/2}}\)

\(\Big \downarrow \) 4029

\(\displaystyle \frac {\frac {(c-i d) \int \frac {\sqrt {i \tan (e+f x) a+a}}{\sqrt {c+d \tan (e+f x)}}dx}{2 a}+\frac {i \sqrt {c+d \tan (e+f x)}}{f \sqrt {a+i a \tan (e+f x)}}}{2 a}-\frac {(c+d \tan (e+f x))^{3/2}}{3 f (-d+i c) (a+i a \tan (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {(c-i d) \int \frac {\sqrt {i \tan (e+f x) a+a}}{\sqrt {c+d \tan (e+f x)}}dx}{2 a}+\frac {i \sqrt {c+d \tan (e+f x)}}{f \sqrt {a+i a \tan (e+f x)}}}{2 a}-\frac {(c+d \tan (e+f x))^{3/2}}{3 f (-d+i c) (a+i a \tan (e+f x))^{3/2}}\)

\(\Big \downarrow \) 4027

\(\displaystyle \frac {\frac {i \sqrt {c+d \tan (e+f x)}}{f \sqrt {a+i a \tan (e+f x)}}-\frac {i a (c-i d) \int \frac {1}{a (c-i d)-\frac {2 a^2 (c+d \tan (e+f x))}{i \tan (e+f x) a+a}}d\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {i \tan (e+f x) a+a}}}{f}}{2 a}-\frac {(c+d \tan (e+f x))^{3/2}}{3 f (-d+i c) (a+i a \tan (e+f x))^{3/2}}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\frac {i \sqrt {c+d \tan (e+f x)}}{f \sqrt {a+i a \tan (e+f x)}}-\frac {i \sqrt {c-i d} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {a} \sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d} \sqrt {a+i a \tan (e+f x)}}\right )}{\sqrt {2} \sqrt {a} f}}{2 a}-\frac {(c+d \tan (e+f x))^{3/2}}{3 f (-d+i c) (a+i a \tan (e+f x))^{3/2}}\)

Input:

Int[Sqrt[c + d*Tan[e + f*x]]/(a + I*a*Tan[e + f*x])^(3/2),x]
 

Output:

-1/3*(c + d*Tan[e + f*x])^(3/2)/((I*c - d)*f*(a + I*a*Tan[e + f*x])^(3/2)) 
 + (((-I)*Sqrt[c - I*d]*ArcTanh[(Sqrt[2]*Sqrt[a]*Sqrt[c + d*Tan[e + f*x]]) 
/(Sqrt[c - I*d]*Sqrt[a + I*a*Tan[e + f*x]])])/(Sqrt[2]*Sqrt[a]*f) + (I*Sqr 
t[c + d*Tan[e + f*x]])/(f*Sqrt[a + I*a*Tan[e + f*x]]))/(2*a)
 

Defintions of rubi rules used

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4029
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(a + b*Tan[e + f*x])^m*((c + d*Tan[e 
 + f*x])^n/(2*b*f*m)), x] - Simp[(a*c - b*d)/(2*b^2)   Int[(a + b*Tan[e + f 
*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, 
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && Eq 
Q[m + n, 0] && LeQ[m, -2^(-1)]
 

rule 4030
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(a + b*Tan[e + f*x])^m*((c + d*Tan[e 
 + f*x])^(n + 1)/(2*f*m*(b*c - a*d))), x] + Simp[1/(2*a)   Int[(a + b*Tan[e 
 + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f} 
, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[ 
m + n + 1, 0] && LtQ[m, -1]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1179 vs. \(2 (139 ) = 278\).

Time = 0.57 (sec) , antiderivative size = 1180, normalized size of antiderivative = 6.67

method result size
derivativedivides \(\text {Expression too large to display}\) \(1180\)
default \(\text {Expression too large to display}\) \(1180\)

Input:

int((c+d*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^(3/2),x,method=_RETURNVERBOS 
E)
 

Output:

1/24/f*(c+d*tan(f*x+e))^(1/2)*(a*(1+I*tan(f*x+e)))^(1/2)/a^2*(9*I*ln((3*a* 
c+I*a*tan(f*x+e)*c-I*a*d+3*a*d*tan(f*x+e)+2*2^(1/2)*(-a*(I*d-c))^(1/2)*(a* 
(c+d*tan(f*x+e))*(1+I*tan(f*x+e)))^(1/2))/(I+tan(f*x+e)))*2^(1/2)*(-a*(I*d 
-c))^(1/2)*c*tan(f*x+e)^2+9*I*ln((3*a*c+I*a*tan(f*x+e)*c-I*a*d+3*a*d*tan(f 
*x+e)+2*2^(1/2)*(-a*(I*d-c))^(1/2)*(a*(c+d*tan(f*x+e))*(1+I*tan(f*x+e)))^( 
1/2))/(I+tan(f*x+e)))*2^(1/2)*(-a*(I*d-c))^(1/2)*d*tan(f*x+e)-3*ln((3*a*c+ 
I*a*tan(f*x+e)*c-I*a*d+3*a*d*tan(f*x+e)+2*2^(1/2)*(-a*(I*d-c))^(1/2)*(a*(c 
+d*tan(f*x+e))*(1+I*tan(f*x+e)))^(1/2))/(I+tan(f*x+e)))*2^(1/2)*(-a*(I*d-c 
))^(1/2)*c*tan(f*x+e)^3+4*(a*(c+d*tan(f*x+e))*(1+I*tan(f*x+e)))^(1/2)*d*ta 
n(f*x+e)^2-12*I*c*(a*(c+d*tan(f*x+e))*(1+I*tan(f*x+e)))^(1/2)*tan(f*x+e)^2 
-9*ln((3*a*c+I*a*tan(f*x+e)*c-I*a*d+3*a*d*tan(f*x+e)+2*2^(1/2)*(-a*(I*d-c) 
)^(1/2)*(a*(c+d*tan(f*x+e))*(1+I*tan(f*x+e)))^(1/2))/(I+tan(f*x+e)))*2^(1/ 
2)*(-a*(I*d-c))^(1/2)*d*tan(f*x+e)^2-32*c*(a*(c+d*tan(f*x+e))*(1+I*tan(f*x 
+e)))^(1/2)*tan(f*x+e)-3*I*ln((3*a*c+I*a*tan(f*x+e)*c-I*a*d+3*a*d*tan(f*x+ 
e)+2*2^(1/2)*(-a*(I*d-c))^(1/2)*(a*(c+d*tan(f*x+e))*(1+I*tan(f*x+e)))^(1/2 
))/(I+tan(f*x+e)))*2^(1/2)*(-a*(I*d-c))^(1/2)*c-3*I*ln((3*a*c+I*a*tan(f*x+ 
e)*c-I*a*d+3*a*d*tan(f*x+e)+2*2^(1/2)*(-a*(I*d-c))^(1/2)*(a*(c+d*tan(f*x+e 
))*(1+I*tan(f*x+e)))^(1/2))/(I+tan(f*x+e)))*2^(1/2)*(-a*(I*d-c))^(1/2)*d*t 
an(f*x+e)^3+9*ln((3*a*c+I*a*tan(f*x+e)*c-I*a*d+3*a*d*tan(f*x+e)+2*2^(1/2)* 
(-a*(I*d-c))^(1/2)*(a*(c+d*tan(f*x+e))*(1+I*tan(f*x+e)))^(1/2))/(I+tan(...
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 419 vs. \(2 (131) = 262\).

Time = 0.12 (sec) , antiderivative size = 419, normalized size of antiderivative = 2.37 \[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+i a \tan (e+f x))^{3/2}} \, dx=\frac {{\left (3 \, \sqrt {\frac {1}{2}} {\left (i \, a^{2} c - a^{2} d\right )} f \sqrt {-\frac {c - i \, d}{a^{3} f^{2}}} e^{\left (3 i \, f x + 3 i \, e\right )} \log \left (2 i \, \sqrt {\frac {1}{2}} a^{2} f \sqrt {-\frac {c - i \, d}{a^{3} f^{2}}} e^{\left (i \, f x + i \, e\right )} + \sqrt {2} \sqrt {\frac {{\left (c - i \, d\right )} e^{\left (2 i \, f x + 2 i \, e\right )} + c + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} {\left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right )}\right ) + 3 \, \sqrt {\frac {1}{2}} {\left (-i \, a^{2} c + a^{2} d\right )} f \sqrt {-\frac {c - i \, d}{a^{3} f^{2}}} e^{\left (3 i \, f x + 3 i \, e\right )} \log \left (-2 i \, \sqrt {\frac {1}{2}} a^{2} f \sqrt {-\frac {c - i \, d}{a^{3} f^{2}}} e^{\left (i \, f x + i \, e\right )} + \sqrt {2} \sqrt {\frac {{\left (c - i \, d\right )} e^{\left (2 i \, f x + 2 i \, e\right )} + c + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} {\left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right )}\right ) - \sqrt {2} {\left (2 \, {\left (2 \, c + i \, d\right )} e^{\left (4 i \, f x + 4 i \, e\right )} + {\left (5 \, c + 3 i \, d\right )} e^{\left (2 i \, f x + 2 i \, e\right )} + c + i \, d\right )} \sqrt {\frac {{\left (c - i \, d\right )} e^{\left (2 i \, f x + 2 i \, e\right )} + c + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}\right )} e^{\left (-3 i \, f x - 3 i \, e\right )}}{12 \, {\left (i \, a^{2} c - a^{2} d\right )} f} \] Input:

integrate((c+d*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^(3/2),x, algorithm="fr 
icas")
 

Output:

1/12*(3*sqrt(1/2)*(I*a^2*c - a^2*d)*f*sqrt(-(c - I*d)/(a^3*f^2))*e^(3*I*f* 
x + 3*I*e)*log(2*I*sqrt(1/2)*a^2*f*sqrt(-(c - I*d)/(a^3*f^2))*e^(I*f*x + I 
*e) + sqrt(2)*sqrt(((c - I*d)*e^(2*I*f*x + 2*I*e) + c + I*d)/(e^(2*I*f*x + 
 2*I*e) + 1))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*(e^(2*I*f*x + 2*I*e) + 1)) 
 + 3*sqrt(1/2)*(-I*a^2*c + a^2*d)*f*sqrt(-(c - I*d)/(a^3*f^2))*e^(3*I*f*x 
+ 3*I*e)*log(-2*I*sqrt(1/2)*a^2*f*sqrt(-(c - I*d)/(a^3*f^2))*e^(I*f*x + I* 
e) + sqrt(2)*sqrt(((c - I*d)*e^(2*I*f*x + 2*I*e) + c + I*d)/(e^(2*I*f*x + 
2*I*e) + 1))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*(e^(2*I*f*x + 2*I*e) + 1)) 
- sqrt(2)*(2*(2*c + I*d)*e^(4*I*f*x + 4*I*e) + (5*c + 3*I*d)*e^(2*I*f*x + 
2*I*e) + c + I*d)*sqrt(((c - I*d)*e^(2*I*f*x + 2*I*e) + c + I*d)/(e^(2*I*f 
*x + 2*I*e) + 1))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1)))*e^(-3*I*f*x - 3*I*e)/ 
((I*a^2*c - a^2*d)*f)
 

Sympy [F]

\[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+i a \tan (e+f x))^{3/2}} \, dx=\int \frac {\sqrt {c + d \tan {\left (e + f x \right )}}}{\left (i a \left (\tan {\left (e + f x \right )} - i\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((c+d*tan(f*x+e))**(1/2)/(a+I*a*tan(f*x+e))**(3/2),x)
 

Output:

Integral(sqrt(c + d*tan(e + f*x))/(I*a*(tan(e + f*x) - I))**(3/2), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+i a \tan (e+f x))^{3/2}} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate((c+d*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^(3/2),x, algorithm="ma 
xima")
 

Output:

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
                                                                                    
                                                                                    
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+i a \tan (e+f x))^{3/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((c+d*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^(3/2),x, algorithm="gi 
ac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeError: Bad Argument TypeError: Bad Argument TypeRecursive ass 
umption s
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+i a \tan (e+f x))^{3/2}} \, dx=\int \frac {\sqrt {c+d\,\mathrm {tan}\left (e+f\,x\right )}}{{\left (a+a\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{3/2}} \,d x \] Input:

int((c + d*tan(e + f*x))^(1/2)/(a + a*tan(e + f*x)*1i)^(3/2),x)
 

Output:

int((c + d*tan(e + f*x))^(1/2)/(a + a*tan(e + f*x)*1i)^(3/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+i a \tan (e+f x))^{3/2}} \, dx=\int \frac {\sqrt {d \tan \left (f x +e \right )+c}}{\left (a +i a \tan \left (f x +e \right )\right )^{\frac {3}{2}}}d x \] Input:

int((c+d*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^(3/2),x)
 

Output:

int((c+d*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^(3/2),x)