\(\int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{3/2}} \, dx\) [1285]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F(-1)]
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 29, antiderivative size = 206 \[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{3/2}} \, dx=-\frac {i \sqrt {c-i d} \text {arctanh}\left (\frac {\sqrt {c-i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a-i b} \sqrt {c+d \tan (e+f x)}}\right )}{(a-i b)^{3/2} f}+\frac {i \sqrt {c+i d} \text {arctanh}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{(a+i b)^{3/2} f}-\frac {2 b \sqrt {c+d \tan (e+f x)}}{\left (a^2+b^2\right ) f \sqrt {a+b \tan (e+f x)}} \] Output:

-I*(c-I*d)^(1/2)*arctanh((c-I*d)^(1/2)*(a+b*tan(f*x+e))^(1/2)/(a-I*b)^(1/2 
)/(c+d*tan(f*x+e))^(1/2))/(a-I*b)^(3/2)/f+I*(c+I*d)^(1/2)*arctanh((c+I*d)^ 
(1/2)*(a+b*tan(f*x+e))^(1/2)/(a+I*b)^(1/2)/(c+d*tan(f*x+e))^(1/2))/(a+I*b) 
^(3/2)/f-2*b*(c+d*tan(f*x+e))^(1/2)/(a^2+b^2)/f/(a+b*tan(f*x+e))^(1/2)
 

Mathematica [A] (verified)

Time = 1.19 (sec) , antiderivative size = 224, normalized size of antiderivative = 1.09 \[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{3/2}} \, dx=\frac {\frac {i \sqrt {-c+i d} \text {arctanh}\left (\frac {\sqrt {-c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {-a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{(-a+i b)^{3/2}}+\frac {\frac {(i a+b) \sqrt {c+i d} \text {arctanh}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{(a+i b)^{3/2}}-\frac {2 b \sqrt {c+d \tan (e+f x)}}{(a+i b) \sqrt {a+b \tan (e+f x)}}}{a-i b}}{f} \] Input:

Integrate[Sqrt[c + d*Tan[e + f*x]]/(a + b*Tan[e + f*x])^(3/2),x]
 

Output:

((I*Sqrt[-c + I*d]*ArcTanh[(Sqrt[-c + I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt 
[-a + I*b]*Sqrt[c + d*Tan[e + f*x]])])/(-a + I*b)^(3/2) + (((I*a + b)*Sqrt 
[c + I*d]*ArcTanh[(Sqrt[c + I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a + I*b]* 
Sqrt[c + d*Tan[e + f*x]])])/(a + I*b)^(3/2) - (2*b*Sqrt[c + d*Tan[e + f*x] 
])/((a + I*b)*Sqrt[a + b*Tan[e + f*x]]))/(a - I*b))/f
 

Rubi [A] (verified)

Time = 1.07 (sec) , antiderivative size = 231, normalized size of antiderivative = 1.12, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.310, Rules used = {3042, 4051, 27, 3042, 4099, 3042, 4098, 104, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{3/2}}dx\)

\(\Big \downarrow \) 4051

\(\displaystyle -\frac {2 \int -\frac {a c+b d-(b c-a d) \tan (e+f x)}{2 \sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}dx}{a^2+b^2}-\frac {2 b \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) \sqrt {a+b \tan (e+f x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a c+b d-(b c-a d) \tan (e+f x)}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}dx}{a^2+b^2}-\frac {2 b \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) \sqrt {a+b \tan (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a c+b d-(b c-a d) \tan (e+f x)}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}dx}{a^2+b^2}-\frac {2 b \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) \sqrt {a+b \tan (e+f x)}}\)

\(\Big \downarrow \) 4099

\(\displaystyle -\frac {2 b \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) \sqrt {a+b \tan (e+f x)}}+\frac {\frac {1}{2} (a-i b) (c+i d) \int \frac {1-i \tan (e+f x)}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}dx+\frac {1}{2} (a+i b) (c-i d) \int \frac {i \tan (e+f x)+1}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}dx}{a^2+b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 b \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) \sqrt {a+b \tan (e+f x)}}+\frac {\frac {1}{2} (a-i b) (c+i d) \int \frac {1-i \tan (e+f x)}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}dx+\frac {1}{2} (a+i b) (c-i d) \int \frac {i \tan (e+f x)+1}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}dx}{a^2+b^2}\)

\(\Big \downarrow \) 4098

\(\displaystyle -\frac {2 b \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) \sqrt {a+b \tan (e+f x)}}+\frac {\frac {(a+i b) (c-i d) \int \frac {1}{(1-i \tan (e+f x)) \sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}d\tan (e+f x)}{2 f}+\frac {(a-i b) (c+i d) \int \frac {1}{(i \tan (e+f x)+1) \sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}d\tan (e+f x)}{2 f}}{a^2+b^2}\)

\(\Big \downarrow \) 104

\(\displaystyle -\frac {2 b \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) \sqrt {a+b \tan (e+f x)}}+\frac {\frac {(a-i b) (c+i d) \int \frac {1}{-i a+b+\frac {(i c-d) (a+b \tan (e+f x))}{c+d \tan (e+f x)}}d\frac {\sqrt {a+b \tan (e+f x)}}{\sqrt {c+d \tan (e+f x)}}}{f}+\frac {(a+i b) (c-i d) \int \frac {1}{i a+b-\frac {(i c+d) (a+b \tan (e+f x))}{c+d \tan (e+f x)}}d\frac {\sqrt {a+b \tan (e+f x)}}{\sqrt {c+d \tan (e+f x)}}}{f}}{a^2+b^2}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {2 b \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) \sqrt {a+b \tan (e+f x)}}+\frac {\frac {i (a-i b) \sqrt {c+i d} \text {arctanh}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{f \sqrt {a+i b}}-\frac {i (a+i b) \sqrt {c-i d} \text {arctanh}\left (\frac {\sqrt {c-i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a-i b} \sqrt {c+d \tan (e+f x)}}\right )}{f \sqrt {a-i b}}}{a^2+b^2}\)

Input:

Int[Sqrt[c + d*Tan[e + f*x]]/(a + b*Tan[e + f*x])^(3/2),x]
 

Output:

(((-I)*(a + I*b)*Sqrt[c - I*d]*ArcTanh[(Sqrt[c - I*d]*Sqrt[a + b*Tan[e + f 
*x]])/(Sqrt[a - I*b]*Sqrt[c + d*Tan[e + f*x]])])/(Sqrt[a - I*b]*f) + (I*(a 
 - I*b)*Sqrt[c + I*d]*ArcTanh[(Sqrt[c + I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sq 
rt[a + I*b]*Sqrt[c + d*Tan[e + f*x]])])/(Sqrt[a + I*b]*f))/(a^2 + b^2) - ( 
2*b*Sqrt[c + d*Tan[e + f*x]])/((a^2 + b^2)*f*Sqrt[a + b*Tan[e + f*x]])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4051
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a + b*Tan[e + f*x])^(m + 1)*((c + 
d*Tan[e + f*x])^n/(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/((m + 1)*(a^2 + b^2 
))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*c 
*(m + 1) - b*d*n - (b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(m + n + 1)*Tan[e 
 + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] 
&& NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && GtQ[n, 0] && Int 
egerQ[2*m]
 

rule 4098
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[A^2/f   Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e + f* 
x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[A^2 + B^2, 0]
 

rule 4099
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(A + I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 - I*T 
an[e + f*x]), x], x] + Simp[(A - I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d 
*Tan[e + f*x])^n*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A 
, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2 + B^2, 
0]
 
Maple [F(-1)]

Timed out.

\[\int \frac {\sqrt {c +d \tan \left (f x +e \right )}}{\left (a +b \tan \left (f x +e \right )\right )^{\frac {3}{2}}}d x\]

Input:

int((c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(3/2),x)
 

Output:

int((c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(3/2),x)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 11981 vs. \(2 (158) = 316\).

Time = 7.84 (sec) , antiderivative size = 11981, normalized size of antiderivative = 58.16 \[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{3/2}} \, dx=\text {Too large to display} \] Input:

integrate((c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(3/2),x, algorithm="fric 
as")
                                                                                    
                                                                                    
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{3/2}} \, dx=\int \frac {\sqrt {c + d \tan {\left (e + f x \right )}}}{\left (a + b \tan {\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((c+d*tan(f*x+e))**(1/2)/(a+b*tan(f*x+e))**(3/2),x)
 

Output:

Integral(sqrt(c + d*tan(e + f*x))/(a + b*tan(e + f*x))**(3/2), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{3/2}} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(3/2),x, algorithm="maxi 
ma")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(((2*b*d+2*a*c)^2>0)', see `assum 
e?` for mo
 

Giac [F]

\[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{3/2}} \, dx=\int { \frac {\sqrt {d \tan \left (f x + e\right ) + c}}{{\left (b \tan \left (f x + e\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(3/2),x, algorithm="giac 
")
 

Output:

integrate(sqrt(d*tan(f*x + e) + c)/(b*tan(f*x + e) + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{3/2}} \, dx=\int \frac {\sqrt {c+d\,\mathrm {tan}\left (e+f\,x\right )}}{{\left (a+b\,\mathrm {tan}\left (e+f\,x\right )\right )}^{3/2}} \,d x \] Input:

int((c + d*tan(e + f*x))^(1/2)/(a + b*tan(e + f*x))^(3/2),x)
 

Output:

int((c + d*tan(e + f*x))^(1/2)/(a + b*tan(e + f*x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{3/2}} \, dx=\int \frac {\sqrt {d \tan \left (f x +e \right )+c}\, \sqrt {\tan \left (f x +e \right ) b +a}}{\tan \left (f x +e \right )^{2} b^{2}+2 \tan \left (f x +e \right ) a b +a^{2}}d x \] Input:

int((c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(3/2),x)
 

Output:

int((sqrt(tan(e + f*x)*d + c)*sqrt(tan(e + f*x)*b + a))/(tan(e + f*x)**2*b 
**2 + 2*tan(e + f*x)*a*b + a**2),x)