\(\int \frac {(a+b \tan (e+f x))^{7/2}}{(c+d \tan (e+f x))^{5/2}} \, dx\) [1313]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [F(-1)]
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 29, antiderivative size = 347 \[ \int \frac {(a+b \tan (e+f x))^{7/2}}{(c+d \tan (e+f x))^{5/2}} \, dx=-\frac {i (a-i b)^{7/2} \text {arctanh}\left (\frac {\sqrt {c-i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a-i b} \sqrt {c+d \tan (e+f x)}}\right )}{(c-i d)^{5/2} f}+\frac {i (a+i b)^{7/2} \text {arctanh}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{(c+i d)^{5/2} f}+\frac {2 b^{7/2} \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a+b \tan (e+f x)}}{\sqrt {b} \sqrt {c+d \tan (e+f x)}}\right )}{d^{5/2} f}-\frac {2 (b c-a d)^2 (a+b \tan (e+f x))^{3/2}}{3 d \left (c^2+d^2\right ) f (c+d \tan (e+f x))^{3/2}}-\frac {2 (b c-a d)^2 \left (2 a c d+b \left (c^2+3 d^2\right )\right ) \sqrt {a+b \tan (e+f x)}}{d^2 \left (c^2+d^2\right )^2 f \sqrt {c+d \tan (e+f x)}} \] Output:

-I*(a-I*b)^(7/2)*arctanh((c-I*d)^(1/2)*(a+b*tan(f*x+e))^(1/2)/(a-I*b)^(1/2 
)/(c+d*tan(f*x+e))^(1/2))/(c-I*d)^(5/2)/f+I*(a+I*b)^(7/2)*arctanh((c+I*d)^ 
(1/2)*(a+b*tan(f*x+e))^(1/2)/(a+I*b)^(1/2)/(c+d*tan(f*x+e))^(1/2))/(c+I*d) 
^(5/2)/f+2*b^(7/2)*arctanh(d^(1/2)*(a+b*tan(f*x+e))^(1/2)/b^(1/2)/(c+d*tan 
(f*x+e))^(1/2))/d^(5/2)/f-2/3*(-a*d+b*c)^2*(a+b*tan(f*x+e))^(3/2)/d/(c^2+d 
^2)/f/(c+d*tan(f*x+e))^(3/2)-2*(-a*d+b*c)^2*(2*a*c*d+b*(c^2+3*d^2))*(a+b*t 
an(f*x+e))^(1/2)/d^2/(c^2+d^2)^2/f/(c+d*tan(f*x+e))^(1/2)
 

Mathematica [B] (verified)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(1883\) vs. \(2(347)=694\).

Time = 7.28 (sec) , antiderivative size = 1883, normalized size of antiderivative = 5.43 \[ \int \frac {(a+b \tan (e+f x))^{7/2}}{(c+d \tan (e+f x))^{5/2}} \, dx =\text {Too large to display} \] Input:

Integrate[(a + b*Tan[e + f*x])^(7/2)/(c + d*Tan[e + f*x])^(5/2),x]
 

Output:

((-1/2*I)*(-a - I*b)*((2*(b*c - a*d)*(b/((b^2*c)/(b*c - a*d) - (a*b*d)/(b* 
c - a*d)))^(5/2)*((b^2*c)/(b*c - a*d) - (a*b*d)/(b*c - a*d))^3*Sqrt[(b*(c 
+ d*Tan[e + f*x]))/(b*c - a*d)]*(-1 - (b*d*(a + b*Tan[e + f*x]))/((b*c - a 
*d)*((b^2*c)/(b*c - a*d) - (a*b*d)/(b*c - a*d))))^2*((b^2*d^2*(a + b*Tan[e 
 + f*x])^2)/(3*(b*c - a*d)^2*((b^2*c)/(b*c - a*d) - (a*b*d)/(b*c - a*d))^2 
*(-1 - (b*d*(a + b*Tan[e + f*x]))/((b*c - a*d)*((b^2*c)/(b*c - a*d) - (a*b 
*d)/(b*c - a*d))))^2) - (b*d*(a + b*Tan[e + f*x]))/((b*c - a*d)*((b^2*c)/( 
b*c - a*d) - (a*b*d)/(b*c - a*d))*(-1 - (b*d*(a + b*Tan[e + f*x]))/((b*c - 
 a*d)*((b^2*c)/(b*c - a*d) - (a*b*d)/(b*c - a*d))))) - (Sqrt[b]*Sqrt[d]*Ar 
cSinh[(Sqrt[b]*Sqrt[d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[b*c - a*d]*Sqrt[(b^ 
2*c)/(b*c - a*d) - (a*b*d)/(b*c - a*d)])]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[ 
b*c - a*d]*Sqrt[(b^2*c)/(b*c - a*d) - (a*b*d)/(b*c - a*d)]*Sqrt[1 + (b*d*( 
a + b*Tan[e + f*x]))/((b*c - a*d)*((b^2*c)/(b*c - a*d) - (a*b*d)/(b*c - a* 
d)))])))/(b*d^3*Sqrt[a + b*Tan[e + f*x]]*Sqrt[c + d*Tan[e + f*x]]*(1 + (b* 
d*(a + b*Tan[e + f*x]))/((b*c - a*d)*((b^2*c)/(b*c - a*d) - (a*b*d)/(b*c - 
 a*d))))^(3/2)) - (-a - I*b)*((-2*(a + b*Tan[e + f*x])^(3/2))/(3*(c + I*d) 
*(c + d*Tan[e + f*x])^(3/2)) + ((a + I*b)*((-2*Sqrt[a + I*b]*ArcTanh[(Sqrt 
[c + I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a + I*b]*Sqrt[c + d*Tan[e + f*x] 
])])/((-c - I*d)*Sqrt[c + I*d]) + (2*Sqrt[a + b*Tan[e + f*x]])/((-c - I*d) 
*Sqrt[c + d*Tan[e + f*x]])))/(c + I*d))))/f - ((I/2)*(-a + I*b)*((-2*(b...
 

Rubi [A] (verified)

Time = 2.40 (sec) , antiderivative size = 402, normalized size of antiderivative = 1.16, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.345, Rules used = {3042, 4048, 27, 3042, 4128, 27, 3042, 4138, 2348, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \tan (e+f x))^{7/2}}{(c+d \tan (e+f x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+b \tan (e+f x))^{7/2}}{(c+d \tan (e+f x))^{5/2}}dx\)

\(\Big \downarrow \) 4048

\(\displaystyle \frac {2 \int \frac {3 \sqrt {a+b \tan (e+f x)} \left (c d a^3+3 b d^2 a^2-3 b^2 c d a+b^3 c^2+b^3 \left (c^2+d^2\right ) \tan ^2(e+f x)+d \left (-d a^3+3 b c a^2+3 b^2 d a-b^3 c\right ) \tan (e+f x)\right )}{2 (c+d \tan (e+f x))^{3/2}}dx}{3 d \left (c^2+d^2\right )}-\frac {2 (b c-a d)^2 (a+b \tan (e+f x))^{3/2}}{3 d f \left (c^2+d^2\right ) (c+d \tan (e+f x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sqrt {a+b \tan (e+f x)} \left (c d a^3+3 b d^2 a^2-3 b^2 c d a+b^3 c^2+b^3 \left (c^2+d^2\right ) \tan ^2(e+f x)+d \left (-d a^3+3 b c a^2+3 b^2 d a-b^3 c\right ) \tan (e+f x)\right )}{(c+d \tan (e+f x))^{3/2}}dx}{d \left (c^2+d^2\right )}-\frac {2 (b c-a d)^2 (a+b \tan (e+f x))^{3/2}}{3 d f \left (c^2+d^2\right ) (c+d \tan (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {a+b \tan (e+f x)} \left (c d a^3+3 b d^2 a^2-3 b^2 c d a+b^3 c^2+b^3 \left (c^2+d^2\right ) \tan (e+f x)^2+d \left (-d a^3+3 b c a^2+3 b^2 d a-b^3 c\right ) \tan (e+f x)\right )}{(c+d \tan (e+f x))^{3/2}}dx}{d \left (c^2+d^2\right )}-\frac {2 (b c-a d)^2 (a+b \tan (e+f x))^{3/2}}{3 d f \left (c^2+d^2\right ) (c+d \tan (e+f x))^{3/2}}\)

\(\Big \downarrow \) 4128

\(\displaystyle \frac {\frac {2 \int \frac {d^2 \left (c^2-d^2\right ) a^4+8 b c d^3 a^3-6 b^2 d^2 \left (c^2-d^2\right ) a^2-8 b^3 c d^3 a+b^4 \left (c^2+d^2\right )^2 \tan ^2(e+f x)+b^4 \left (c^4+3 d^2 c^2\right )+2 d^2 \left (c a^2+2 b d a-b^2 c\right ) \left (-d a^2+2 b c a+b^2 d\right ) \tan (e+f x)}{2 \sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}dx}{d \left (c^2+d^2\right )}-\frac {2 (b c-a d)^2 \left (2 a c d+b \left (c^2+3 d^2\right )\right ) \sqrt {a+b \tan (e+f x)}}{d f \left (c^2+d^2\right ) \sqrt {c+d \tan (e+f x)}}}{d \left (c^2+d^2\right )}-\frac {2 (b c-a d)^2 (a+b \tan (e+f x))^{3/2}}{3 d f \left (c^2+d^2\right ) (c+d \tan (e+f x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {d^2 \left (c^2-d^2\right ) a^4+8 b c d^3 a^3-6 b^2 d^2 \left (c^2-d^2\right ) a^2-8 b^3 c d^3 a+b^4 \left (c^2+d^2\right )^2 \tan ^2(e+f x)+b^4 \left (c^4+3 d^2 c^2\right )+2 d^2 \left (c a^2+2 b d a-b^2 c\right ) \left (-d a^2+2 b c a+b^2 d\right ) \tan (e+f x)}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}dx}{d \left (c^2+d^2\right )}-\frac {2 (b c-a d)^2 \left (2 a c d+b \left (c^2+3 d^2\right )\right ) \sqrt {a+b \tan (e+f x)}}{d f \left (c^2+d^2\right ) \sqrt {c+d \tan (e+f x)}}}{d \left (c^2+d^2\right )}-\frac {2 (b c-a d)^2 (a+b \tan (e+f x))^{3/2}}{3 d f \left (c^2+d^2\right ) (c+d \tan (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {d^2 \left (c^2-d^2\right ) a^4+8 b c d^3 a^3-6 b^2 d^2 \left (c^2-d^2\right ) a^2-8 b^3 c d^3 a+b^4 \left (c^2+d^2\right )^2 \tan (e+f x)^2+b^4 \left (c^4+3 d^2 c^2\right )+2 d^2 \left (c a^2+2 b d a-b^2 c\right ) \left (-d a^2+2 b c a+b^2 d\right ) \tan (e+f x)}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}dx}{d \left (c^2+d^2\right )}-\frac {2 (b c-a d)^2 \left (2 a c d+b \left (c^2+3 d^2\right )\right ) \sqrt {a+b \tan (e+f x)}}{d f \left (c^2+d^2\right ) \sqrt {c+d \tan (e+f x)}}}{d \left (c^2+d^2\right )}-\frac {2 (b c-a d)^2 (a+b \tan (e+f x))^{3/2}}{3 d f \left (c^2+d^2\right ) (c+d \tan (e+f x))^{3/2}}\)

\(\Big \downarrow \) 4138

\(\displaystyle \frac {\frac {\int \frac {d^2 \left (c^2-d^2\right ) a^4+8 b c d^3 a^3-6 b^2 d^2 \left (c^2-d^2\right ) a^2-8 b^3 c d^3 a+b^4 \left (c^2+d^2\right )^2 \tan ^2(e+f x)+b^4 \left (c^4+3 d^2 c^2\right )+2 d^2 \left (c a^2+2 b d a-b^2 c\right ) \left (-d a^2+2 b c a+b^2 d\right ) \tan (e+f x)}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)} \left (\tan ^2(e+f x)+1\right )}d\tan (e+f x)}{d f \left (c^2+d^2\right )}-\frac {2 (b c-a d)^2 \left (2 a c d+b \left (c^2+3 d^2\right )\right ) \sqrt {a+b \tan (e+f x)}}{d f \left (c^2+d^2\right ) \sqrt {c+d \tan (e+f x)}}}{d \left (c^2+d^2\right )}-\frac {2 (b c-a d)^2 (a+b \tan (e+f x))^{3/2}}{3 d f \left (c^2+d^2\right ) (c+d \tan (e+f x))^{3/2}}\)

\(\Big \downarrow \) 2348

\(\displaystyle -\frac {2 (b c-a d)^2 (a+b \tan (e+f x))^{3/2}}{3 d f \left (c^2+d^2\right ) (c+d \tan (e+f x))^{3/2}}+\frac {-\frac {2 (b c-a d)^2 \left (2 a c d+b \left (c^2+3 d^2\right )\right ) \sqrt {a+b \tan (e+f x)}}{d f \left (c^2+d^2\right ) \sqrt {c+d \tan (e+f x)}}+\frac {\int \left (\frac {\left (c^2+d^2\right )^2 b^4}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}+\frac {2 c d^3 a^4+4 b d^4 a^3-4 b c^2 d^2 a^3-12 b^2 c d^3 a^2-4 b^3 d^4 a+4 b^3 c^2 d^2 a+2 b^4 c d^3+i \left (-d^4 a^4+c^2 d^2 a^4+8 b c d^3 a^3+6 b^2 d^4 a^2-6 b^2 c^2 d^2 a^2-8 b^3 c d^3 a-b^4 d^4+b^4 c^2 d^2\right )}{2 (i-\tan (e+f x)) \sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}+\frac {-2 c d^3 a^4-4 b d^4 a^3+4 b c^2 d^2 a^3+12 b^2 c d^3 a^2+4 b^3 d^4 a-4 b^3 c^2 d^2 a-2 b^4 c d^3+i \left (-d^4 a^4+c^2 d^2 a^4+8 b c d^3 a^3+6 b^2 d^4 a^2-6 b^2 c^2 d^2 a^2-8 b^3 c d^3 a-b^4 d^4+b^4 c^2 d^2\right )}{2 (\tan (e+f x)+i) \sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}\right )d\tan (e+f x)}{d f \left (c^2+d^2\right )}}{d \left (c^2+d^2\right )}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 (b c-a d)^2 (a+b \tan (e+f x))^{3/2}}{3 d f \left (c^2+d^2\right ) (c+d \tan (e+f x))^{3/2}}+\frac {-\frac {2 (b c-a d)^2 \left (2 a c d+b \left (c^2+3 d^2\right )\right ) \sqrt {a+b \tan (e+f x)}}{d f \left (c^2+d^2\right ) \sqrt {c+d \tan (e+f x)}}+\frac {\frac {2 b^{7/2} \left (c^2+d^2\right )^2 \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a+b \tan (e+f x)}}{\sqrt {b} \sqrt {c+d \tan (e+f x)}}\right )}{\sqrt {d}}-\frac {i d^2 (a-i b)^{7/2} (c+i d)^2 \text {arctanh}\left (\frac {\sqrt {c-i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a-i b} \sqrt {c+d \tan (e+f x)}}\right )}{\sqrt {c-i d}}+\frac {i d^2 (a+i b)^{7/2} (c-i d)^2 \text {arctanh}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{\sqrt {c+i d}}}{d f \left (c^2+d^2\right )}}{d \left (c^2+d^2\right )}\)

Input:

Int[(a + b*Tan[e + f*x])^(7/2)/(c + d*Tan[e + f*x])^(5/2),x]
 

Output:

(-2*(b*c - a*d)^2*(a + b*Tan[e + f*x])^(3/2))/(3*d*(c^2 + d^2)*f*(c + d*Ta 
n[e + f*x])^(3/2)) + ((((-I)*(a - I*b)^(7/2)*(c + I*d)^2*d^2*ArcTanh[(Sqrt 
[c - I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a - I*b]*Sqrt[c + d*Tan[e + f*x] 
])])/Sqrt[c - I*d] + (I*(a + I*b)^(7/2)*(c - I*d)^2*d^2*ArcTanh[(Sqrt[c + 
I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a + I*b]*Sqrt[c + d*Tan[e + f*x]])])/ 
Sqrt[c + I*d] + (2*b^(7/2)*(c^2 + d^2)^2*ArcTanh[(Sqrt[d]*Sqrt[a + b*Tan[e 
 + f*x]])/(Sqrt[b]*Sqrt[c + d*Tan[e + f*x]])])/Sqrt[d])/(d*(c^2 + d^2)*f) 
- (2*(b*c - a*d)^2*(2*a*c*d + b*(c^2 + 3*d^2))*Sqrt[a + b*Tan[e + f*x]])/( 
d*(c^2 + d^2)*f*Sqrt[c + d*Tan[e + f*x]]))/(d*(c^2 + d^2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2348
Int[(Px_)*((c_) + (d_.)*(x_))^(m_.)*((e_) + (f_.)*(x_))^(n_.)*((a_.) + (b_. 
)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[Px*(c + d*x)^m*(e + f*x)^ 
n*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && PolyQ[P 
x, x] && (IntegerQ[p] || (IntegerQ[2*p] && IntegerQ[m] && ILtQ[n, 0])) && 
!(IGtQ[m, 0] && IGtQ[n, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4048
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)^2*(a + b*Tan[e + f*x])^(m 
 - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2))), x] - Simp[1 
/(d*(n + 1)*(c^2 + d^2))   Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + 
f*x])^(n + 1)*Simp[a^2*d*(b*d*(m - 2) - a*c*(n + 1)) + b*(b*c - 2*a*d)*(b*c 
*(m - 2) + a*d*(n + 1)) - d*(n + 1)*(3*a^2*b*c - b^3*c - a^3*d + 3*a*b^2*d) 
*Tan[e + f*x] - b*(a*d*(2*b*c - a*d)*(m + n - 1) - b^2*(c^2*(m - 2) - d^2*( 
n + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 2] && LtQ 
[n, -1] && IntegerQ[2*m]
 

rule 4128
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*d^2 + c*(c*C - B*d))*(a + b*Tan[e + 
 f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2))), x] - Sim 
p[1/(d*(n + 1)*(c^2 + d^2))   Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e 
 + f*x])^(n + 1)*Simp[A*d*(b*d*m - a*c*(n + 1)) + (c*C - B*d)*(b*c*m + a*d* 
(n + 1)) - d*(n + 1)*((A - C)*(b*c - a*d) + B*(a*c + b*d))*Tan[e + f*x] - b 
*(d*(B*c - A*d)*(m + n + 1) - C*(c^2*m - d^2*(n + 1)))*Tan[e + f*x]^2, x], 
x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ 
[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] && LtQ[n, -1]
 

rule 4138
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, S 
imp[ff/f   Subst[Int[(a + b*ff*x)^m*(c + d*ff*x)^n*((A + B*ff*x + C*ff^2*x^ 
2)/(1 + ff^2*x^2)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f 
, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + 
 d^2, 0]
 
Maple [F(-1)]

Timed out.

\[\int \frac {\left (a +b \tan \left (f x +e \right )\right )^{\frac {7}{2}}}{\left (c +d \tan \left (f x +e \right )\right )^{\frac {5}{2}}}d x\]

Input:

int((a+b*tan(f*x+e))^(7/2)/(c+d*tan(f*x+e))^(5/2),x)
 

Output:

int((a+b*tan(f*x+e))^(7/2)/(c+d*tan(f*x+e))^(5/2),x)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 39312 vs. \(2 (281) = 562\).

Time = 173.15 (sec) , antiderivative size = 78685, normalized size of antiderivative = 226.76 \[ \int \frac {(a+b \tan (e+f x))^{7/2}}{(c+d \tan (e+f x))^{5/2}} \, dx=\text {Too large to display} \] Input:

integrate((a+b*tan(f*x+e))^(7/2)/(c+d*tan(f*x+e))^(5/2),x, algorithm="fric 
as")
                                                                                    
                                                                                    
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \tan (e+f x))^{7/2}}{(c+d \tan (e+f x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate((a+b*tan(f*x+e))**(7/2)/(c+d*tan(f*x+e))**(5/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+b \tan (e+f x))^{7/2}}{(c+d \tan (e+f x))^{5/2}} \, dx=\int { \frac {{\left (b \tan \left (f x + e\right ) + a\right )}^{\frac {7}{2}}}{{\left (d \tan \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((a+b*tan(f*x+e))^(7/2)/(c+d*tan(f*x+e))^(5/2),x, algorithm="maxi 
ma")
 

Output:

integrate((b*tan(f*x + e) + a)^(7/2)/(d*tan(f*x + e) + c)^(5/2), x)
 

Giac [F]

\[ \int \frac {(a+b \tan (e+f x))^{7/2}}{(c+d \tan (e+f x))^{5/2}} \, dx=\int { \frac {{\left (b \tan \left (f x + e\right ) + a\right )}^{\frac {7}{2}}}{{\left (d \tan \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((a+b*tan(f*x+e))^(7/2)/(c+d*tan(f*x+e))^(5/2),x, algorithm="giac 
")
 

Output:

integrate((b*tan(f*x + e) + a)^(7/2)/(d*tan(f*x + e) + c)^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \tan (e+f x))^{7/2}}{(c+d \tan (e+f x))^{5/2}} \, dx=\int \frac {{\left (a+b\,\mathrm {tan}\left (e+f\,x\right )\right )}^{7/2}}{{\left (c+d\,\mathrm {tan}\left (e+f\,x\right )\right )}^{5/2}} \,d x \] Input:

int((a + b*tan(e + f*x))^(7/2)/(c + d*tan(e + f*x))^(5/2),x)
 

Output:

int((a + b*tan(e + f*x))^(7/2)/(c + d*tan(e + f*x))^(5/2), x)
 

Reduce [F]

\[ \int \frac {(a+b \tan (e+f x))^{7/2}}{(c+d \tan (e+f x))^{5/2}} \, dx=\text {too large to display} \] Input:

int((a+b*tan(f*x+e))^(7/2)/(c+d*tan(f*x+e))^(5/2),x)
 

Output:

(2*sqrt(tan(e + f*x)*d + c)*sqrt(tan(e + f*x)*b + a)*tan(e + f*x)*a**2*b** 
3*d + 2*sqrt(tan(e + f*x)*d + c)*sqrt(tan(e + f*x)*b + a)*tan(e + f*x)*a*b 
**4*c - 4*sqrt(tan(e + f*x)*d + c)*sqrt(tan(e + f*x)*b + a)*a**3*b**2*d + 
8*sqrt(tan(e + f*x)*d + c)*sqrt(tan(e + f*x)*b + a)*a**2*b**3*c + int((sqr 
t(tan(e + f*x)*d + c)*sqrt(tan(e + f*x)*b + a)*tan(e + f*x)**3)/(tan(e + f 
*x)**3*d**3 + 3*tan(e + f*x)**2*c*d**2 + 3*tan(e + f*x)*c**2*d + c**3),x)* 
tan(e + f*x)**2*a**2*b**3*d**4*f - 2*int((sqrt(tan(e + f*x)*d + c)*sqrt(ta 
n(e + f*x)*b + a)*tan(e + f*x)**3)/(tan(e + f*x)**3*d**3 + 3*tan(e + f*x)* 
*2*c*d**2 + 3*tan(e + f*x)*c**2*d + c**3),x)*tan(e + f*x)**2*a*b**4*c*d**3 
*f + int((sqrt(tan(e + f*x)*d + c)*sqrt(tan(e + f*x)*b + a)*tan(e + f*x)** 
3)/(tan(e + f*x)**3*d**3 + 3*tan(e + f*x)**2*c*d**2 + 3*tan(e + f*x)*c**2* 
d + c**3),x)*tan(e + f*x)**2*b**5*c**2*d**2*f + 2*int((sqrt(tan(e + f*x)*d 
 + c)*sqrt(tan(e + f*x)*b + a)*tan(e + f*x)**3)/(tan(e + f*x)**3*d**3 + 3* 
tan(e + f*x)**2*c*d**2 + 3*tan(e + f*x)*c**2*d + c**3),x)*tan(e + f*x)*a** 
2*b**3*c*d**3*f - 4*int((sqrt(tan(e + f*x)*d + c)*sqrt(tan(e + f*x)*b + a) 
*tan(e + f*x)**3)/(tan(e + f*x)**3*d**3 + 3*tan(e + f*x)**2*c*d**2 + 3*tan 
(e + f*x)*c**2*d + c**3),x)*tan(e + f*x)*a*b**4*c**2*d**2*f + 2*int((sqrt( 
tan(e + f*x)*d + c)*sqrt(tan(e + f*x)*b + a)*tan(e + f*x)**3)/(tan(e + f*x 
)**3*d**3 + 3*tan(e + f*x)**2*c*d**2 + 3*tan(e + f*x)*c**2*d + c**3),x)*ta 
n(e + f*x)*b**5*c**3*d*f + int((sqrt(tan(e + f*x)*d + c)*sqrt(tan(e + f...