\(\int \frac {a+i a \tan (e+f x)}{\sqrt {d \tan (e+f x)}} \, dx\) [138]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [C] (verification not implemented)
Giac [C] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 40 \[ \int \frac {a+i a \tan (e+f x)}{\sqrt {d \tan (e+f x)}} \, dx=-\frac {2 \sqrt [4]{-1} a \arctan \left (\frac {(-1)^{3/4} \sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )}{\sqrt {d} f} \] Output:

-2*(-1)^(1/4)*a*arctan((-1)^(3/4)*(d*tan(f*x+e))^(1/2)/d^(1/2))/d^(1/2)/f
 

Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 40, normalized size of antiderivative = 1.00 \[ \int \frac {a+i a \tan (e+f x)}{\sqrt {d \tan (e+f x)}} \, dx=-\frac {2 \sqrt [4]{-1} a \arctan \left (\frac {(-1)^{3/4} \sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )}{\sqrt {d} f} \] Input:

Integrate[(a + I*a*Tan[e + f*x])/Sqrt[d*Tan[e + f*x]],x]
 

Output:

(-2*(-1)^(1/4)*a*ArcTan[((-1)^(3/4)*Sqrt[d*Tan[e + f*x]])/Sqrt[d]])/(Sqrt[ 
d]*f)
 

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 40, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {3042, 4016, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+i a \tan (e+f x)}{\sqrt {d \tan (e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a+i a \tan (e+f x)}{\sqrt {d \tan (e+f x)}}dx\)

\(\Big \downarrow \) 4016

\(\displaystyle \frac {2 a^2 \int \frac {1}{a d-i a d \tan (e+f x)}d\sqrt {d \tan (e+f x)}}{f}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {2 \sqrt [4]{-1} a \arctan \left (\frac {(-1)^{3/4} \sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )}{\sqrt {d} f}\)

Input:

Int[(a + I*a*Tan[e + f*x])/Sqrt[d*Tan[e + f*x]],x]
 

Output:

(-2*(-1)^(1/4)*a*ArcTan[((-1)^(3/4)*Sqrt[d*Tan[e + f*x]])/Sqrt[d]])/(Sqrt[ 
d]*f)
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4016
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2*(c^2/f)   Subst[Int[1/(b*c - d*x^2), x], x, Sqrt[b 
*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.60 (sec) , antiderivative size = 273, normalized size of antiderivative = 6.82

method result size
derivativedivides \(\frac {a \left (\frac {\left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 d}+\frac {i \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 \left (d^{2}\right )^{\frac {1}{4}}}\right )}{f}\) \(273\)
default \(\frac {a \left (\frac {\left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 d}+\frac {i \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 \left (d^{2}\right )^{\frac {1}{4}}}\right )}{f}\) \(273\)
parts \(\frac {a \left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 f d}+\frac {i a \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 f \left (d^{2}\right )^{\frac {1}{4}}}\) \(276\)

Input:

int((a+I*a*tan(f*x+e))/(d*tan(f*x+e))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/f*a*(1/4/d*(d^2)^(1/4)*2^(1/2)*(ln((d*tan(f*x+e)+(d^2)^(1/4)*(d*tan(f*x+ 
e))^(1/2)*2^(1/2)+(d^2)^(1/2))/(d*tan(f*x+e)-(d^2)^(1/4)*(d*tan(f*x+e))^(1 
/2)*2^(1/2)+(d^2)^(1/2)))+2*arctan(2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2 
)+1)-2*arctan(-2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1))+1/4*I/(d^2)^(1 
/4)*2^(1/2)*(ln((d*tan(f*x+e)-(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^ 
2)^(1/2))/(d*tan(f*x+e)+(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/ 
2)))+2*arctan(2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1)-2*arctan(-2^(1/2 
)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1)))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.08 (sec) , antiderivative size = 212, normalized size of antiderivative = 5.30 \[ \int \frac {a+i a \tan (e+f x)}{\sqrt {d \tan (e+f x)}} \, dx=\frac {1}{4} \, \sqrt {-\frac {4 i \, a^{2}}{d f^{2}}} \log \left (\frac {{\left (-2 i \, a d e^{\left (2 i \, f x + 2 i \, e\right )} + {\left (d f e^{\left (2 i \, f x + 2 i \, e\right )} + d f\right )} \sqrt {\frac {-i \, d e^{\left (2 i \, f x + 2 i \, e\right )} + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {-\frac {4 i \, a^{2}}{d f^{2}}}\right )} e^{\left (-2 i \, f x - 2 i \, e\right )}}{a}\right ) - \frac {1}{4} \, \sqrt {-\frac {4 i \, a^{2}}{d f^{2}}} \log \left (\frac {{\left (-2 i \, a d e^{\left (2 i \, f x + 2 i \, e\right )} - {\left (d f e^{\left (2 i \, f x + 2 i \, e\right )} + d f\right )} \sqrt {\frac {-i \, d e^{\left (2 i \, f x + 2 i \, e\right )} + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {-\frac {4 i \, a^{2}}{d f^{2}}}\right )} e^{\left (-2 i \, f x - 2 i \, e\right )}}{a}\right ) \] Input:

integrate((a+I*a*tan(f*x+e))/(d*tan(f*x+e))^(1/2),x, algorithm="fricas")
 

Output:

1/4*sqrt(-4*I*a^2/(d*f^2))*log((-2*I*a*d*e^(2*I*f*x + 2*I*e) + (d*f*e^(2*I 
*f*x + 2*I*e) + d*f)*sqrt((-I*d*e^(2*I*f*x + 2*I*e) + I*d)/(e^(2*I*f*x + 2 
*I*e) + 1))*sqrt(-4*I*a^2/(d*f^2)))*e^(-2*I*f*x - 2*I*e)/a) - 1/4*sqrt(-4* 
I*a^2/(d*f^2))*log((-2*I*a*d*e^(2*I*f*x + 2*I*e) - (d*f*e^(2*I*f*x + 2*I*e 
) + d*f)*sqrt((-I*d*e^(2*I*f*x + 2*I*e) + I*d)/(e^(2*I*f*x + 2*I*e) + 1))* 
sqrt(-4*I*a^2/(d*f^2)))*e^(-2*I*f*x - 2*I*e)/a)
 

Sympy [F]

\[ \int \frac {a+i a \tan (e+f x)}{\sqrt {d \tan (e+f x)}} \, dx=i a \left (\int \left (- \frac {i}{\sqrt {d \tan {\left (e + f x \right )}}}\right )\, dx + \int \frac {\tan {\left (e + f x \right )}}{\sqrt {d \tan {\left (e + f x \right )}}}\, dx\right ) \] Input:

integrate((a+I*a*tan(f*x+e))/(d*tan(f*x+e))**(1/2),x)
 

Output:

I*a*(Integral(-I/sqrt(d*tan(e + f*x)), x) + Integral(tan(e + f*x)/sqrt(d*t 
an(e + f*x)), x))
 

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.12 (sec) , antiderivative size = 154, normalized size of antiderivative = 3.85 \[ \int \frac {a+i a \tan (e+f x)}{\sqrt {d \tan (e+f x)}} \, dx=-\frac {a {\left (-\frac {\left (2 i + 2\right ) \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} + 2 \, \sqrt {d \tan \left (f x + e\right )}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} - \frac {\left (2 i + 2\right ) \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} - 2 \, \sqrt {d \tan \left (f x + e\right )}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} + \frac {\left (i - 1\right ) \, \sqrt {2} \log \left (d \tan \left (f x + e\right ) + \sqrt {2} \sqrt {d \tan \left (f x + e\right )} \sqrt {d} + d\right )}{\sqrt {d}} - \frac {\left (i - 1\right ) \, \sqrt {2} \log \left (d \tan \left (f x + e\right ) - \sqrt {2} \sqrt {d \tan \left (f x + e\right )} \sqrt {d} + d\right )}{\sqrt {d}}\right )}}{4 \, f} \] Input:

integrate((a+I*a*tan(f*x+e))/(d*tan(f*x+e))^(1/2),x, algorithm="maxima")
 

Output:

-1/4*a*(-(2*I + 2)*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(d) + 2*sqrt(d* 
tan(f*x + e)))/sqrt(d))/sqrt(d) - (2*I + 2)*sqrt(2)*arctan(-1/2*sqrt(2)*(s 
qrt(2)*sqrt(d) - 2*sqrt(d*tan(f*x + e)))/sqrt(d))/sqrt(d) + (I - 1)*sqrt(2 
)*log(d*tan(f*x + e) + sqrt(2)*sqrt(d*tan(f*x + e))*sqrt(d) + d)/sqrt(d) - 
 (I - 1)*sqrt(2)*log(d*tan(f*x + e) - sqrt(2)*sqrt(d*tan(f*x + e))*sqrt(d) 
 + d)/sqrt(d))/f
 

Giac [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.16 (sec) , antiderivative size = 58, normalized size of antiderivative = 1.45 \[ \int \frac {a+i a \tan (e+f x)}{\sqrt {d \tan (e+f x)}} \, dx=\frac {2 i \, \sqrt {2} a \arctan \left (\frac {2 \, \sqrt {d \tan \left (f x + e\right )} {\left | d \right |}}{i \, \sqrt {2} d^{\frac {3}{2}} + \sqrt {2} \sqrt {d} {\left | d \right |}}\right )}{\sqrt {d} f {\left (\frac {i \, d}{{\left | d \right |}} + 1\right )}} \] Input:

integrate((a+I*a*tan(f*x+e))/(d*tan(f*x+e))^(1/2),x, algorithm="giac")
 

Output:

2*I*sqrt(2)*a*arctan(2*sqrt(d*tan(f*x + e))*abs(d)/(I*sqrt(2)*d^(3/2) + sq 
rt(2)*sqrt(d)*abs(d)))/(sqrt(d)*f*(I*d/abs(d) + 1))
 

Mupad [B] (verification not implemented)

Time = 1.39 (sec) , antiderivative size = 30, normalized size of antiderivative = 0.75 \[ \int \frac {a+i a \tan (e+f x)}{\sqrt {d \tan (e+f x)}} \, dx=-\frac {{\left (-1\right )}^{1/4}\,a\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}}{\sqrt {d}}\right )\,2{}\mathrm {i}}{\sqrt {d}\,f} \] Input:

int((a + a*tan(e + f*x)*1i)/(d*tan(e + f*x))^(1/2),x)
 

Output:

-((-1)^(1/4)*a*atanh(((-1)^(1/4)*(d*tan(e + f*x))^(1/2))/d^(1/2))*2i)/(d^( 
1/2)*f)
 

Reduce [F]

\[ \int \frac {a+i a \tan (e+f x)}{\sqrt {d \tan (e+f x)}} \, dx=\frac {\sqrt {d}\, a \left (\int \frac {\sqrt {\tan \left (f x +e \right )}}{\tan \left (f x +e \right )}d x +\left (\int \sqrt {\tan \left (f x +e \right )}d x \right ) i \right )}{d} \] Input:

int((a+I*a*tan(f*x+e))/(d*tan(f*x+e))^(1/2),x)
 

Output:

(sqrt(d)*a*(int(sqrt(tan(e + f*x))/tan(e + f*x),x) + int(sqrt(tan(e + f*x) 
),x)*i))/d