\(\int (d \tan (e+f x))^{3/2} (a+i a \tan (e+f x))^3 \, dx\) [157]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 152 \[ \int (d \tan (e+f x))^{3/2} (a+i a \tan (e+f x))^3 \, dx=\frac {8 \sqrt [4]{-1} a^3 d^{3/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )}{f}+\frac {8 a^3 d \sqrt {d \tan (e+f x)}}{f}+\frac {8 i a^3 (d \tan (e+f x))^{3/2}}{3 f}-\frac {32 a^3 (d \tan (e+f x))^{5/2}}{35 d f}-\frac {2 (d \tan (e+f x))^{5/2} \left (a^3+i a^3 \tan (e+f x)\right )}{7 d f} \] Output:

8*(-1)^(1/4)*a^3*d^(3/2)*arctan((-1)^(3/4)*(d*tan(f*x+e))^(1/2)/d^(1/2))/f 
+8*a^3*d*(d*tan(f*x+e))^(1/2)/f+8/3*I*a^3*(d*tan(f*x+e))^(3/2)/f-32/35*a^3 
*(d*tan(f*x+e))^(5/2)/d/f-2/7*(d*tan(f*x+e))^(5/2)*(a^3+I*a^3*tan(f*x+e))/ 
d/f
 

Mathematica [A] (verified)

Time = 0.74 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.62 \[ \int (d \tan (e+f x))^{3/2} (a+i a \tan (e+f x))^3 \, dx=\frac {2 a^3 d \left (420 \sqrt [4]{-1} \sqrt {d} \arctan \left (\frac {(-1)^{3/4} \sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )+\sqrt {d \tan (e+f x)} \left (420+140 i \tan (e+f x)-63 \tan ^2(e+f x)-15 i \tan ^3(e+f x)\right )\right )}{105 f} \] Input:

Integrate[(d*Tan[e + f*x])^(3/2)*(a + I*a*Tan[e + f*x])^3,x]
 

Output:

(2*a^3*d*(420*(-1)^(1/4)*Sqrt[d]*ArcTan[((-1)^(3/4)*Sqrt[d*Tan[e + f*x]])/ 
Sqrt[d]] + Sqrt[d*Tan[e + f*x]]*(420 + (140*I)*Tan[e + f*x] - 63*Tan[e + f 
*x]^2 - (15*I)*Tan[e + f*x]^3)))/(105*f)
 

Rubi [A] (verified)

Time = 0.89 (sec) , antiderivative size = 161, normalized size of antiderivative = 1.06, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3042, 4039, 27, 3042, 4075, 3042, 4011, 3042, 4011, 3042, 4016, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a+i a \tan (e+f x))^3 (d \tan (e+f x))^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (a+i a \tan (e+f x))^3 (d \tan (e+f x))^{3/2}dx\)

\(\Big \downarrow \) 4039

\(\displaystyle \frac {2 a \int 2 (d \tan (e+f x))^{3/2} (i \tan (e+f x) a+a) (3 a d+4 i a \tan (e+f x) d)dx}{7 d}-\frac {2 \left (a^3+i a^3 \tan (e+f x)\right ) (d \tan (e+f x))^{5/2}}{7 d f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {4 a \int (d \tan (e+f x))^{3/2} (i \tan (e+f x) a+a) (3 a d+4 i a \tan (e+f x) d)dx}{7 d}-\frac {2 \left (a^3+i a^3 \tan (e+f x)\right ) (d \tan (e+f x))^{5/2}}{7 d f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 a \int (d \tan (e+f x))^{3/2} (i \tan (e+f x) a+a) (3 a d+4 i a \tan (e+f x) d)dx}{7 d}-\frac {2 \left (a^3+i a^3 \tan (e+f x)\right ) (d \tan (e+f x))^{5/2}}{7 d f}\)

\(\Big \downarrow \) 4075

\(\displaystyle \frac {4 a \left (-\frac {8 a^2 (d \tan (e+f x))^{5/2}}{5 f}+\int (d \tan (e+f x))^{3/2} \left (7 d a^2+7 i d \tan (e+f x) a^2\right )dx\right )}{7 d}-\frac {2 \left (a^3+i a^3 \tan (e+f x)\right ) (d \tan (e+f x))^{5/2}}{7 d f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 a \left (-\frac {8 a^2 (d \tan (e+f x))^{5/2}}{5 f}+\int (d \tan (e+f x))^{3/2} \left (7 d a^2+7 i d \tan (e+f x) a^2\right )dx\right )}{7 d}-\frac {2 \left (a^3+i a^3 \tan (e+f x)\right ) (d \tan (e+f x))^{5/2}}{7 d f}\)

\(\Big \downarrow \) 4011

\(\displaystyle \frac {4 a \left (\int \sqrt {d \tan (e+f x)} \left (7 a^2 d^2 \tan (e+f x)-7 i a^2 d^2\right )dx-\frac {8 a^2 (d \tan (e+f x))^{5/2}}{5 f}+\frac {14 i a^2 d (d \tan (e+f x))^{3/2}}{3 f}\right )}{7 d}-\frac {2 \left (a^3+i a^3 \tan (e+f x)\right ) (d \tan (e+f x))^{5/2}}{7 d f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 a \left (\int \sqrt {d \tan (e+f x)} \left (7 a^2 d^2 \tan (e+f x)-7 i a^2 d^2\right )dx-\frac {8 a^2 (d \tan (e+f x))^{5/2}}{5 f}+\frac {14 i a^2 d (d \tan (e+f x))^{3/2}}{3 f}\right )}{7 d}-\frac {2 \left (a^3+i a^3 \tan (e+f x)\right ) (d \tan (e+f x))^{5/2}}{7 d f}\)

\(\Big \downarrow \) 4011

\(\displaystyle \frac {4 a \left (\int \frac {-7 a^2 d^3-7 i a^2 \tan (e+f x) d^3}{\sqrt {d \tan (e+f x)}}dx+\frac {14 a^2 d^2 \sqrt {d \tan (e+f x)}}{f}-\frac {8 a^2 (d \tan (e+f x))^{5/2}}{5 f}+\frac {14 i a^2 d (d \tan (e+f x))^{3/2}}{3 f}\right )}{7 d}-\frac {2 \left (a^3+i a^3 \tan (e+f x)\right ) (d \tan (e+f x))^{5/2}}{7 d f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 a \left (\int \frac {-7 a^2 d^3-7 i a^2 \tan (e+f x) d^3}{\sqrt {d \tan (e+f x)}}dx+\frac {14 a^2 d^2 \sqrt {d \tan (e+f x)}}{f}-\frac {8 a^2 (d \tan (e+f x))^{5/2}}{5 f}+\frac {14 i a^2 d (d \tan (e+f x))^{3/2}}{3 f}\right )}{7 d}-\frac {2 \left (a^3+i a^3 \tan (e+f x)\right ) (d \tan (e+f x))^{5/2}}{7 d f}\)

\(\Big \downarrow \) 4016

\(\displaystyle \frac {4 a \left (\frac {98 a^4 d^6 \int \frac {1}{7 i a^2 d^4 \tan (e+f x)-7 a^2 d^4}d\sqrt {d \tan (e+f x)}}{f}+\frac {14 a^2 d^2 \sqrt {d \tan (e+f x)}}{f}+\frac {14 i a^2 d (d \tan (e+f x))^{3/2}}{3 f}-\frac {8 a^2 (d \tan (e+f x))^{5/2}}{5 f}\right )}{7 d}-\frac {2 \left (a^3+i a^3 \tan (e+f x)\right ) (d \tan (e+f x))^{5/2}}{7 d f}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {4 a \left (\frac {14 \sqrt [4]{-1} a^2 d^{5/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )}{f}+\frac {14 a^2 d^2 \sqrt {d \tan (e+f x)}}{f}+\frac {14 i a^2 d (d \tan (e+f x))^{3/2}}{3 f}-\frac {8 a^2 (d \tan (e+f x))^{5/2}}{5 f}\right )}{7 d}-\frac {2 \left (a^3+i a^3 \tan (e+f x)\right ) (d \tan (e+f x))^{5/2}}{7 d f}\)

Input:

Int[(d*Tan[e + f*x])^(3/2)*(a + I*a*Tan[e + f*x])^3,x]
 

Output:

(-2*(d*Tan[e + f*x])^(5/2)*(a^3 + I*a^3*Tan[e + f*x]))/(7*d*f) + (4*a*((14 
*(-1)^(1/4)*a^2*d^(5/2)*ArcTan[((-1)^(3/4)*Sqrt[d*Tan[e + f*x]])/Sqrt[d]]) 
/f + (14*a^2*d^2*Sqrt[d*Tan[e + f*x]])/f + (((14*I)/3)*a^2*d*(d*Tan[e + f* 
x])^(3/2))/f - (8*a^2*(d*Tan[e + f*x])^(5/2))/(5*f)))/(7*d)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4011
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[d*((a + b*Tan[e + f*x])^m/(f*m)), x] + Int 
[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x], x] 
, x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 
 0] && GtQ[m, 0]
 

rule 4016
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2*(c^2/f)   Subst[Int[1/(b*c - d*x^2), x], x, Sqrt[b 
*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]
 

rule 4039
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*(a + b*Tan[e + f*x])^(m - 2)*((c + 
 d*Tan[e + f*x])^(n + 1)/(d*f*(m + n - 1))), x] + Simp[a/(d*(m + n - 1)) 
Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n*Simp[b*c*(m - 2) + 
a*d*(m + 2*n) + (a*c*(m - 2) + b*d*(3*m + 2*n - 4))*Tan[e + f*x], x], x], x 
] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 
 0] && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && GtQ[m, 1] && NeQ[m + n - 1, 0] 
 && (IntegerQ[m] || IntegersQ[2*m, 2*n])
 

rule 4075
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[B 
*d*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f* 
x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] &&  !LeQ[m, -1]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 341 vs. \(2 (126 ) = 252\).

Time = 1.57 (sec) , antiderivative size = 342, normalized size of antiderivative = 2.25

method result size
derivativedivides \(\frac {2 a^{3} \left (-\frac {i \left (d \tan \left (f x +e \right )\right )^{\frac {7}{2}}}{7}-\frac {3 d \left (d \tan \left (f x +e \right )\right )^{\frac {5}{2}}}{5}+\frac {4 i d^{2} \left (d \tan \left (f x +e \right )\right )^{\frac {3}{2}}}{3}+4 d^{3} \sqrt {d \tan \left (f x +e \right )}-4 d^{4} \left (\frac {\left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 d}+\frac {i \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (d^{2}\right )^{\frac {1}{4}}}\right )\right )}{f \,d^{2}}\) \(342\)
default \(\frac {2 a^{3} \left (-\frac {i \left (d \tan \left (f x +e \right )\right )^{\frac {7}{2}}}{7}-\frac {3 d \left (d \tan \left (f x +e \right )\right )^{\frac {5}{2}}}{5}+\frac {4 i d^{2} \left (d \tan \left (f x +e \right )\right )^{\frac {3}{2}}}{3}+4 d^{3} \sqrt {d \tan \left (f x +e \right )}-4 d^{4} \left (\frac {\left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 d}+\frac {i \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (d^{2}\right )^{\frac {1}{4}}}\right )\right )}{f \,d^{2}}\) \(342\)
parts \(\frac {2 a^{3} d \left (\sqrt {d \tan \left (f x +e \right )}-\frac {\left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8}\right )}{f}-\frac {2 i a^{3} \left (\frac {\left (d \tan \left (f x +e \right )\right )^{\frac {7}{2}}}{7}-\frac {d^{2} \left (d \tan \left (f x +e \right )\right )^{\frac {3}{2}}}{3}+\frac {d^{4} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (d^{2}\right )^{\frac {1}{4}}}\right )}{f \,d^{2}}+\frac {3 i a^{3} \left (\frac {2 \left (d \tan \left (f x +e \right )\right )^{\frac {3}{2}}}{3}-\frac {d^{2} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 \left (d^{2}\right )^{\frac {1}{4}}}\right )}{f}-\frac {6 a^{3} \left (\frac {\left (d \tan \left (f x +e \right )\right )^{\frac {5}{2}}}{5}-d^{2} \sqrt {d \tan \left (f x +e \right )}+\frac {d^{2} \left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8}\right )}{f d}\) \(656\)

Input:

int((d*tan(f*x+e))^(3/2)*(a+I*a*tan(f*x+e))^3,x,method=_RETURNVERBOSE)
 

Output:

2/f*a^3/d^2*(-1/7*I*(d*tan(f*x+e))^(7/2)-3/5*d*(d*tan(f*x+e))^(5/2)+4/3*I* 
d^2*(d*tan(f*x+e))^(3/2)+4*d^3*(d*tan(f*x+e))^(1/2)-4*d^4*(1/8/d*(d^2)^(1/ 
4)*2^(1/2)*(ln((d*tan(f*x+e)+(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2 
)^(1/2))/(d*tan(f*x+e)-(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2 
)))+2*arctan(2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1)-2*arctan(-2^(1/2) 
/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1))+1/8*I/(d^2)^(1/4)*2^(1/2)*(ln((d*tan 
(f*x+e)-(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2))/(d*tan(f*x+e 
)+(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2)))+2*arctan(2^(1/2)/ 
(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1)-2*arctan(-2^(1/2)/(d^2)^(1/4)*(d*tan(f 
*x+e))^(1/2)+1))))
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 423 vs. \(2 (124) = 248\).

Time = 0.10 (sec) , antiderivative size = 423, normalized size of antiderivative = 2.78 \[ \int (d \tan (e+f x))^{3/2} (a+i a \tan (e+f x))^3 \, dx=-\frac {105 \, \sqrt {-\frac {64 i \, a^{6} d^{3}}{f^{2}}} {\left (f e^{\left (6 i \, f x + 6 i \, e\right )} + 3 \, f e^{\left (4 i \, f x + 4 i \, e\right )} + 3 \, f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )} \log \left (\frac {{\left (-8 i \, a^{3} d^{2} e^{\left (2 i \, f x + 2 i \, e\right )} + \sqrt {-\frac {64 i \, a^{6} d^{3}}{f^{2}}} {\left (f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )} \sqrt {\frac {-i \, d e^{\left (2 i \, f x + 2 i \, e\right )} + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}\right )} e^{\left (-2 i \, f x - 2 i \, e\right )}}{4 \, a^{3} d}\right ) - 105 \, \sqrt {-\frac {64 i \, a^{6} d^{3}}{f^{2}}} {\left (f e^{\left (6 i \, f x + 6 i \, e\right )} + 3 \, f e^{\left (4 i \, f x + 4 i \, e\right )} + 3 \, f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )} \log \left (\frac {{\left (-8 i \, a^{3} d^{2} e^{\left (2 i \, f x + 2 i \, e\right )} - \sqrt {-\frac {64 i \, a^{6} d^{3}}{f^{2}}} {\left (f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )} \sqrt {\frac {-i \, d e^{\left (2 i \, f x + 2 i \, e\right )} + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}\right )} e^{\left (-2 i \, f x - 2 i \, e\right )}}{4 \, a^{3} d}\right ) - 16 \, {\left (319 \, a^{3} d e^{\left (6 i \, f x + 6 i \, e\right )} + 646 \, a^{3} d e^{\left (4 i \, f x + 4 i \, e\right )} + 551 \, a^{3} d e^{\left (2 i \, f x + 2 i \, e\right )} + 164 \, a^{3} d\right )} \sqrt {\frac {-i \, d e^{\left (2 i \, f x + 2 i \, e\right )} + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}}{420 \, {\left (f e^{\left (6 i \, f x + 6 i \, e\right )} + 3 \, f e^{\left (4 i \, f x + 4 i \, e\right )} + 3 \, f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )}} \] Input:

integrate((d*tan(f*x+e))^(3/2)*(a+I*a*tan(f*x+e))^3,x, algorithm="fricas")
 

Output:

-1/420*(105*sqrt(-64*I*a^6*d^3/f^2)*(f*e^(6*I*f*x + 6*I*e) + 3*f*e^(4*I*f* 
x + 4*I*e) + 3*f*e^(2*I*f*x + 2*I*e) + f)*log(1/4*(-8*I*a^3*d^2*e^(2*I*f*x 
 + 2*I*e) + sqrt(-64*I*a^6*d^3/f^2)*(f*e^(2*I*f*x + 2*I*e) + f)*sqrt((-I*d 
*e^(2*I*f*x + 2*I*e) + I*d)/(e^(2*I*f*x + 2*I*e) + 1)))*e^(-2*I*f*x - 2*I* 
e)/(a^3*d)) - 105*sqrt(-64*I*a^6*d^3/f^2)*(f*e^(6*I*f*x + 6*I*e) + 3*f*e^( 
4*I*f*x + 4*I*e) + 3*f*e^(2*I*f*x + 2*I*e) + f)*log(1/4*(-8*I*a^3*d^2*e^(2 
*I*f*x + 2*I*e) - sqrt(-64*I*a^6*d^3/f^2)*(f*e^(2*I*f*x + 2*I*e) + f)*sqrt 
((-I*d*e^(2*I*f*x + 2*I*e) + I*d)/(e^(2*I*f*x + 2*I*e) + 1)))*e^(-2*I*f*x 
- 2*I*e)/(a^3*d)) - 16*(319*a^3*d*e^(6*I*f*x + 6*I*e) + 646*a^3*d*e^(4*I*f 
*x + 4*I*e) + 551*a^3*d*e^(2*I*f*x + 2*I*e) + 164*a^3*d)*sqrt((-I*d*e^(2*I 
*f*x + 2*I*e) + I*d)/(e^(2*I*f*x + 2*I*e) + 1)))/(f*e^(6*I*f*x + 6*I*e) + 
3*f*e^(4*I*f*x + 4*I*e) + 3*f*e^(2*I*f*x + 2*I*e) + f)
 

Sympy [F]

\[ \int (d \tan (e+f x))^{3/2} (a+i a \tan (e+f x))^3 \, dx=- i a^{3} \left (\int i \left (d \tan {\left (e + f x \right )}\right )^{\frac {3}{2}}\, dx + \int \left (- 3 \left (d \tan {\left (e + f x \right )}\right )^{\frac {3}{2}} \tan {\left (e + f x \right )}\right )\, dx + \int \left (d \tan {\left (e + f x \right )}\right )^{\frac {3}{2}} \tan ^{3}{\left (e + f x \right )}\, dx + \int \left (- 3 i \left (d \tan {\left (e + f x \right )}\right )^{\frac {3}{2}} \tan ^{2}{\left (e + f x \right )}\right )\, dx\right ) \] Input:

integrate((d*tan(f*x+e))**(3/2)*(a+I*a*tan(f*x+e))**3,x)
 

Output:

-I*a**3*(Integral(I*(d*tan(e + f*x))**(3/2), x) + Integral(-3*(d*tan(e + f 
*x))**(3/2)*tan(e + f*x), x) + Integral((d*tan(e + f*x))**(3/2)*tan(e + f* 
x)**3, x) + Integral(-3*I*(d*tan(e + f*x))**(3/2)*tan(e + f*x)**2, x))
 

Maxima [A] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 238, normalized size of antiderivative = 1.57 \[ \int (d \tan (e+f x))^{3/2} (a+i a \tan (e+f x))^3 \, dx=-\frac {105 \, a^{3} d^{3} {\left (\frac {\left (2 i + 2\right ) \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} + 2 \, \sqrt {d \tan \left (f x + e\right )}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} + \frac {\left (2 i + 2\right ) \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} - 2 \, \sqrt {d \tan \left (f x + e\right )}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} - \frac {\left (i - 1\right ) \, \sqrt {2} \log \left (d \tan \left (f x + e\right ) + \sqrt {2} \sqrt {d \tan \left (f x + e\right )} \sqrt {d} + d\right )}{\sqrt {d}} + \frac {\left (i - 1\right ) \, \sqrt {2} \log \left (d \tan \left (f x + e\right ) - \sqrt {2} \sqrt {d \tan \left (f x + e\right )} \sqrt {d} + d\right )}{\sqrt {d}}\right )} - \frac {2 \, {\left (-15 i \, \left (d \tan \left (f x + e\right )\right )^{\frac {7}{2}} a^{3} - 63 \, \left (d \tan \left (f x + e\right )\right )^{\frac {5}{2}} a^{3} d + 140 i \, \left (d \tan \left (f x + e\right )\right )^{\frac {3}{2}} a^{3} d^{2} + 420 \, \sqrt {d \tan \left (f x + e\right )} a^{3} d^{3}\right )}}{d}}{105 \, d f} \] Input:

integrate((d*tan(f*x+e))^(3/2)*(a+I*a*tan(f*x+e))^3,x, algorithm="maxima")
 

Output:

-1/105*(105*a^3*d^3*((2*I + 2)*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(d) 
 + 2*sqrt(d*tan(f*x + e)))/sqrt(d))/sqrt(d) + (2*I + 2)*sqrt(2)*arctan(-1/ 
2*sqrt(2)*(sqrt(2)*sqrt(d) - 2*sqrt(d*tan(f*x + e)))/sqrt(d))/sqrt(d) - (I 
 - 1)*sqrt(2)*log(d*tan(f*x + e) + sqrt(2)*sqrt(d*tan(f*x + e))*sqrt(d) + 
d)/sqrt(d) + (I - 1)*sqrt(2)*log(d*tan(f*x + e) - sqrt(2)*sqrt(d*tan(f*x + 
 e))*sqrt(d) + d)/sqrt(d)) - 2*(-15*I*(d*tan(f*x + e))^(7/2)*a^3 - 63*(d*t 
an(f*x + e))^(5/2)*a^3*d + 140*I*(d*tan(f*x + e))^(3/2)*a^3*d^2 + 420*sqrt 
(d*tan(f*x + e))*a^3*d^3)/d)/(d*f)
 

Giac [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 151, normalized size of antiderivative = 0.99 \[ \int (d \tan (e+f x))^{3/2} (a+i a \tan (e+f x))^3 \, dx=-\frac {2 \, a^{3} d {\left (\frac {420 i \, \sqrt {2} \sqrt {d} \arctan \left (\frac {2 \, \sqrt {d \tan \left (f x + e\right )} {\left | d \right |}}{i \, \sqrt {2} d^{\frac {3}{2}} + \sqrt {2} \sqrt {d} {\left | d \right |}}\right )}{\frac {i \, d}{{\left | d \right |}} + 1} + \frac {15 i \, \sqrt {d \tan \left (f x + e\right )} d^{21} \tan \left (f x + e\right )^{3} + 63 \, \sqrt {d \tan \left (f x + e\right )} d^{21} \tan \left (f x + e\right )^{2} - 140 i \, \sqrt {d \tan \left (f x + e\right )} d^{21} \tan \left (f x + e\right ) - 420 \, \sqrt {d \tan \left (f x + e\right )} d^{21}}{d^{21}}\right )}}{105 \, f} \] Input:

integrate((d*tan(f*x+e))^(3/2)*(a+I*a*tan(f*x+e))^3,x, algorithm="giac")
 

Output:

-2/105*a^3*d*(420*I*sqrt(2)*sqrt(d)*arctan(2*sqrt(d*tan(f*x + e))*abs(d)/( 
I*sqrt(2)*d^(3/2) + sqrt(2)*sqrt(d)*abs(d)))/(I*d/abs(d) + 1) + (15*I*sqrt 
(d*tan(f*x + e))*d^21*tan(f*x + e)^3 + 63*sqrt(d*tan(f*x + e))*d^21*tan(f* 
x + e)^2 - 140*I*sqrt(d*tan(f*x + e))*d^21*tan(f*x + e) - 420*sqrt(d*tan(f 
*x + e))*d^21)/d^21)/f
 

Mupad [B] (verification not implemented)

Time = 1.68 (sec) , antiderivative size = 119, normalized size of antiderivative = 0.78 \[ \int (d \tan (e+f x))^{3/2} (a+i a \tan (e+f x))^3 \, dx=\frac {a^3\,{\left (d\,\mathrm {tan}\left (e+f\,x\right )\right )}^{3/2}\,8{}\mathrm {i}}{3\,f}-\frac {6\,a^3\,{\left (d\,\mathrm {tan}\left (e+f\,x\right )\right )}^{5/2}}{5\,d\,f}-\frac {a^3\,{\left (d\,\mathrm {tan}\left (e+f\,x\right )\right )}^{7/2}\,2{}\mathrm {i}}{7\,d^2\,f}+\frac {8\,a^3\,d\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}}{f}-\frac {\sqrt {16{}\mathrm {i}}\,a^3\,{\left (-d\right )}^{3/2}\,\mathrm {atan}\left (\frac {\sqrt {16{}\mathrm {i}}\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}}{4\,\sqrt {-d}}\right )\,2{}\mathrm {i}}{f} \] Input:

int((d*tan(e + f*x))^(3/2)*(a + a*tan(e + f*x)*1i)^3,x)
 

Output:

(a^3*(d*tan(e + f*x))^(3/2)*8i)/(3*f) - (6*a^3*(d*tan(e + f*x))^(5/2))/(5* 
d*f) - (a^3*(d*tan(e + f*x))^(7/2)*2i)/(7*d^2*f) + (8*a^3*d*(d*tan(e + f*x 
))^(1/2))/f - (16i^(1/2)*a^3*(-d)^(3/2)*atan((16i^(1/2)*(d*tan(e + f*x))^( 
1/2))/(4*(-d)^(1/2)))*2i)/f
 

Reduce [F]

\[ \int (d \tan (e+f x))^{3/2} (a+i a \tan (e+f x))^3 \, dx=\frac {\sqrt {d}\, a^{3} d \left (-6 \sqrt {\tan \left (f x +e \right )}\, \tan \left (f x +e \right )^{2}+40 \sqrt {\tan \left (f x +e \right )}-20 \left (\int \frac {\sqrt {\tan \left (f x +e \right )}}{\tan \left (f x +e \right )}d x \right ) f -5 \left (\int \sqrt {\tan \left (f x +e \right )}\, \tan \left (f x +e \right )^{4}d x \right ) f i +15 \left (\int \sqrt {\tan \left (f x +e \right )}\, \tan \left (f x +e \right )^{2}d x \right ) f i \right )}{5 f} \] Input:

int((d*tan(f*x+e))^(3/2)*(a+I*a*tan(f*x+e))^3,x)
 

Output:

(sqrt(d)*a**3*d*( - 6*sqrt(tan(e + f*x))*tan(e + f*x)**2 + 40*sqrt(tan(e + 
 f*x)) - 20*int(sqrt(tan(e + f*x))/tan(e + f*x),x)*f - 5*int(sqrt(tan(e + 
f*x))*tan(e + f*x)**4,x)*f*i + 15*int(sqrt(tan(e + f*x))*tan(e + f*x)**2,x 
)*f*i))/(5*f)