\(\int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx\) [189]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [F(-2)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 49 \[ \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx=\frac {(1-i) \sqrt {a} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \] Output:

(1-I)*a^(1/2)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1 
/2))/d
 

Mathematica [A] (verified)

Time = 0.15 (sec) , antiderivative size = 74, normalized size of antiderivative = 1.51 \[ \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx=\frac {\sqrt {2} a \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\tan (c+d x)}}{d \sqrt {i a \tan (c+d x)}} \] Input:

Integrate[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[Tan[c + d*x]],x]
 

Output:

(Sqrt[2]*a*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d 
*x]]]*Sqrt[Tan[c + d*x]])/(d*Sqrt[I*a*Tan[c + d*x]])
 

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 49, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {3042, 4027, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}}dx\)

\(\Big \downarrow \) 4027

\(\displaystyle -\frac {2 i a^2 \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {(1-i) \sqrt {a} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\)

Input:

Int[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[Tan[c + d*x]],x]
 

Output:

((1 - I)*Sqrt[a]*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a 
*Tan[c + d*x]]])/d
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 119 vs. \(2 (40 ) = 80\).

Time = 1.77 (sec) , antiderivative size = 120, normalized size of antiderivative = 2.45

method result size
derivativedivides \(-\frac {i \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \sqrt {\tan \left (d x +c \right )}\, \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}}{2 d \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}}\) \(120\)
default \(-\frac {i \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \sqrt {\tan \left (d x +c \right )}\, \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}}{2 d \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}}\) \(120\)

Input:

int((a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-1/2*I/d*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)) 
)^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^(1/2)*(a*(1+I*tan 
(d*x+c)))^(1/2)/(-I*a)^(1/2)/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 206 vs. \(2 (35) = 70\).

Time = 0.08 (sec) , antiderivative size = 206, normalized size of antiderivative = 4.20 \[ \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx=\frac {1}{2} \, \sqrt {-\frac {2 i \, a}{d^{2}}} \log \left ({\left (\sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} + d \sqrt {-\frac {2 i \, a}{d^{2}}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - \frac {1}{2} \, \sqrt {-\frac {2 i \, a}{d^{2}}} \log \left ({\left (\sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} - d \sqrt {-\frac {2 i \, a}{d^{2}}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) \] Input:

integrate((a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(1/2),x, algorithm="fricas")
 

Output:

1/2*sqrt(-2*I*a/d^2)*log((sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(( 
-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c 
) + 1) + d*sqrt(-2*I*a/d^2)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - 1/2*sqrt( 
-2*I*a/d^2)*log((sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I 
*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1) - 
d*sqrt(-2*I*a/d^2)*e^(I*d*x + I*c))*e^(-I*d*x - I*c))
 

Sympy [F]

\[ \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx=\int \frac {\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )}}{\sqrt {\tan {\left (c + d x \right )}}}\, dx \] Input:

integrate((a+I*a*tan(d*x+c))**(1/2)/tan(d*x+c)**(1/2),x)
 

Output:

Integral(sqrt(I*a*(tan(c + d*x) - I))/sqrt(tan(c + d*x)), x)
 

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 379 vs. \(2 (35) = 70\).

Time = 0.20 (sec) , antiderivative size = 379, normalized size of antiderivative = 7.73 \[ \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx=\frac {\sqrt {a} {\left (\left (2 i + 2\right ) \, \arctan \left ({\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), -\cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) - \cos \left (d x + c\right ), {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), -\cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) - \sin \left (d x + c\right )\right ) + \left (i - 1\right ) \, \log \left (\cos \left (d x + c\right )^{2} + \sin \left (d x + c\right )^{2} + \sqrt {\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1} {\left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), -\cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )^{2} + \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), -\cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )^{2}\right )} - 2 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} {\left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), -\cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) \sin \left (d x + c\right ) + \cos \left (d x + c\right ) \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), -\cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )\right )}\right )\right )}}{2 \, d} \] Input:

integrate((a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(1/2),x, algorithm="maxima")
 

Output:

1/2*sqrt(a)*((2*I + 2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 
2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x 
 + 2*c) + 1)) - cos(d*x + c), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2 
*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x 
+ 2*c) + 1)) - sin(d*x + c)) + (I - 1)*log(cos(d*x + c)^2 + sin(d*x + c)^2 
 + sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)* 
(cos(1/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1))^2 + sin(1/2*arc 
tan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1))^2) - 2*(cos(2*d*x + 2*c)^2 
+ sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin( 
2*d*x + 2*c), -cos(2*d*x + 2*c) + 1))*sin(d*x + c) + cos(d*x + c)*sin(1/2* 
arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)))))/d
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(1/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeDone
 

Mupad [B] (verification not implemented)

Time = 2.22 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.82 \[ \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx=\frac {2\,\sqrt {\frac {1}{2}{}\mathrm {i}}\,\sqrt {-a}\,\mathrm {atanh}\left (\frac {2\,\sqrt {\frac {1}{2}{}\mathrm {i}}\,\sqrt {-a}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\left (\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}-\sqrt {a}\right )}{a\,\mathrm {tan}\left (c+d\,x\right )-a\,1{}\mathrm {i}+\sqrt {a}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}\,1{}\mathrm {i}}\right )}{d} \] Input:

int((a + a*tan(c + d*x)*1i)^(1/2)/tan(c + d*x)^(1/2),x)
 

Output:

(2*(1i/2)^(1/2)*(-a)^(1/2)*atanh((2*(1i/2)^(1/2)*(-a)^(1/2)*tan(c + d*x)^( 
1/2)*((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2)))/(a*tan(c + d*x) - a*1i + a 
^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2)*1i)))/d
 

Reduce [F]

\[ \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx=\sqrt {a}\, \left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}}{\tan \left (d x +c \right )}d x \right ) \] Input:

int((a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(1/2),x)
 

Output:

sqrt(a)*int((sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1))/tan(c + d*x),x)