\(\int \frac {\tan ^{\frac {5}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx\) [211]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 177 \[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=-\frac {(-1)^{3/4} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d}+\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}-\frac {2 i \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{a d} \] Output:

-(-1)^(3/4)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^ 
(1/2))/a^(1/2)/d+(1/2+1/2*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a 
*tan(d*x+c))^(1/2))/a^(1/2)/d-tan(d*x+c)^(3/2)/d/(a+I*a*tan(d*x+c))^(1/2)- 
2*I*tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/a/d
 

Mathematica [A] (verified)

Time = 1.26 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.00 \[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {i \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\tan (c+d x)}}{\sqrt {2} d \sqrt {i a \tan (c+d x)}}+\frac {\sqrt [4]{-1} \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right ) \sqrt {1+i \tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}+\frac {\sqrt {\tan (c+d x)} (-2 i+\tan (c+d x))}{d \sqrt {a+i a \tan (c+d x)}} \] Input:

Integrate[Tan[c + d*x]^(5/2)/Sqrt[a + I*a*Tan[c + d*x]],x]
 

Output:

(I*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sq 
rt[Tan[c + d*x]])/(Sqrt[2]*d*Sqrt[I*a*Tan[c + d*x]]) + ((-1)^(1/4)*ArcSinh 
[(-1)^(1/4)*Sqrt[Tan[c + d*x]]]*Sqrt[1 + I*Tan[c + d*x]])/(d*Sqrt[a + I*a* 
Tan[c + d*x]]) + (Sqrt[Tan[c + d*x]]*(-2*I + Tan[c + d*x]))/(d*Sqrt[a + I* 
a*Tan[c + d*x]])
 

Rubi [A] (verified)

Time = 1.07 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.04, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.464, Rules used = {3042, 4041, 27, 3042, 4080, 3042, 4084, 3042, 4027, 218, 4082, 65, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (c+d x)^{5/2}}{\sqrt {a+i a \tan (c+d x)}}dx\)

\(\Big \downarrow \) 4041

\(\displaystyle -\frac {\int -\frac {1}{2} \sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a} (3 a-4 i a \tan (c+d x))dx}{a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a} (3 a-4 i a \tan (c+d x))dx}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a} (3 a-4 i a \tan (c+d x))dx}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 4080

\(\displaystyle \frac {\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (\tan (c+d x) a^2+2 i a^2\right )}{\sqrt {\tan (c+d x)}}dx}{a}-\frac {4 i a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (\tan (c+d x) a^2+2 i a^2\right )}{\sqrt {\tan (c+d x)}}dx}{a}-\frac {4 i a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 4084

\(\displaystyle \frac {\frac {i a^2 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx+i a \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{a}-\frac {4 i a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {i a^2 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx+i a \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{a}-\frac {4 i a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 4027

\(\displaystyle \frac {\frac {\frac {2 a^4 \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}+i a \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{a}-\frac {4 i a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {i a \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx+\frac {(1+i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}}{a}-\frac {4 i a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 4082

\(\displaystyle \frac {\frac {\frac {i a^3 \int \frac {1}{\sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a}}d\tan (c+d x)}{d}+\frac {(1+i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}}{a}-\frac {4 i a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 65

\(\displaystyle \frac {\frac {\frac {2 i a^3 \int \frac {1}{1-\frac {i a \tan (c+d x)}{i \tan (c+d x) a+a}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}+\frac {(1+i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}}{a}-\frac {4 i a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\frac {(1+i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 (-1)^{3/4} a^{5/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}}{a}-\frac {4 i a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

Input:

Int[Tan[c + d*x]^(5/2)/Sqrt[a + I*a*Tan[c + d*x]],x]
 

Output:

-(Tan[c + d*x]^(3/2)/(d*Sqrt[a + I*a*Tan[c + d*x]])) + (((-2*(-1)^(3/4)*a^ 
(5/2)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + 
d*x]]])/d + ((1 + I)*a^(5/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/ 
Sqrt[a + I*a*Tan[c + d*x]]])/d)/a - ((4*I)*a*Sqrt[Tan[c + d*x]]*Sqrt[a + I 
*a*Tan[c + d*x]])/d)/(2*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 65
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2   Sub 
st[Int[1/(b - d*x^2), x], x, Sqrt[b*x]/Sqrt[c + d*x]], x] /; FreeQ[{b, c, d 
}, x] &&  !GtQ[c, 0]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4041
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b*c - a*d))*(a + b*Tan[e + f*x])^m* 
((c + d*Tan[e + f*x])^(n - 1)/(2*a*f*m)), x] + Simp[1/(2*a^2*m)   Int[(a + 
b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 2)*Simp[c*(a*c*m + b*d*(n 
 - 1)) - d*(b*c*m + a*d*(n - 1)) - d*(b*d*(m - n + 1) - a*c*(m + n - 1))*Ta 
n[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] 
 && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, 0] && GtQ[n, 1] && (In 
tegerQ[m] || IntegersQ[2*m, 2*n])
 

rule 4080
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[B*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(f*(m + n))), x] + Simp[ 
1/(a*(m + n))   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1)*Sim 
p[a*A*c*(m + n) - B*(b*c*m + a*d*n) + (a*A*d*(m + n) - B*(b*d*m - a*c*n))*T 
an[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c 
 - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 0]
 

rule 4082
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(B/f)   Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x]], 
x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
a^2 + b^2, 0] && EqQ[A*b + a*B, 0]
 

rule 4084
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b + a*B)/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x], x] 
 - Simp[B/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[ 
e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - 
a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 619 vs. \(2 (140 ) = 280\).

Time = 1.67 (sec) , antiderivative size = 620, normalized size of antiderivative = 3.50

method result size
derivativedivides \(-\frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (2 i \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-\sqrt {2}\, \sqrt {i a}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{2}-2 i \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \tan \left (d x +c \right )^{2}+4 i \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \tan \left (d x +c \right )^{2}+\sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a +2 i \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a -4 \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \tan \left (d x +c \right )-8 i \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+12 \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \tan \left (d x +c \right )\right )}{4 d a \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{2}}\) \(620\)
default \(-\frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (2 i \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-\sqrt {2}\, \sqrt {i a}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{2}-2 i \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \tan \left (d x +c \right )^{2}+4 i \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \tan \left (d x +c \right )^{2}+\sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a +2 i \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a -4 \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \tan \left (d x +c \right )-8 i \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+12 \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \tan \left (d x +c \right )\right )}{4 d a \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{2}}\) \(620\)

Input:

int(tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-1/4/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)/a*(2*I*(I*a)^(1/2)*2^(1 
/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3 
*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)-2^(1/2)*(I*a)^(1/2)*ln((2*2^(1 
/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c)) 
/(tan(d*x+c)+I))*a*tan(d*x+c)^2-2*I*(-I*a)^(1/2)*ln(1/2*(2*I*a*tan(d*x+c)+ 
2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a*tan( 
d*x+c)^2+4*I*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2 
)*tan(d*x+c)^2+2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d 
*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*(I*a)^(1/2)*a+2*I*(-I*a) 
^(1/2)*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I 
*a)^(1/2)+a)/(I*a)^(1/2))*a-4*(-I*a)^(1/2)*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*t 
an(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a*tan(d*x+c) 
-8*I*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)+12*(-I 
*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*tan(d*x+c))/(a 
*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(I*a)^(1/2)/(-I*a)^(1/2)/(-tan(d*x+c)+ 
I)^2
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 580 vs. \(2 (131) = 262\).

Time = 0.14 (sec) , antiderivative size = 580, normalized size of antiderivative = 3.28 \[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx =\text {Too large to display} \] Input:

integrate(tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

-1/4*(a*d*sqrt(2*I/(a*d^2))*e^(I*d*x + I*c)*log(1/4*I*a*d*sqrt(2*I/(a*d^2) 
)*e^(I*d*x + I*c) + 1/4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I 
*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) 
+ 1)) - a*d*sqrt(2*I/(a*d^2))*e^(I*d*x + I*c)*log(-1/4*I*a*d*sqrt(2*I/(a*d 
^2))*e^(I*d*x + I*c) + 1/4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt( 
(-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I* 
c) + 1)) - a*d*sqrt(I/(a*d^2))*e^(I*d*x + I*c)*log(104/605*(2*sqrt(2)*sqrt 
(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d* 
x + 2*I*c) + 1))*(e^(3*I*d*x + 3*I*c) + e^(I*d*x + I*c)) - (3*I*a*d*e^(2*I 
*d*x + 2*I*c) - I*a*d)*sqrt(I/(a*d^2)))/(e^(2*I*d*x + 2*I*c) + 1)) + a*d*s 
qrt(I/(a*d^2))*e^(I*d*x + I*c)*log(104/605*(2*sqrt(2)*sqrt(a/(e^(2*I*d*x + 
 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) 
*(e^(3*I*d*x + 3*I*c) + e^(I*d*x + I*c)) - (-3*I*a*d*e^(2*I*d*x + 2*I*c) + 
 I*a*d)*sqrt(I/(a*d^2)))/(e^(2*I*d*x + 2*I*c) + 1)) + 2*sqrt(2)*sqrt(a/(e^ 
(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2* 
I*c) + 1))*(3*I*e^(2*I*d*x + 2*I*c) + I))*e^(-I*d*x - I*c)/(a*d)
 

Sympy [F]

\[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int \frac {\tan ^{\frac {5}{2}}{\left (c + d x \right )}}{\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )}}\, dx \] Input:

integrate(tan(d*x+c)**(5/2)/(a+I*a*tan(d*x+c))**(1/2),x)
 

Output:

Integral(tan(c + d*x)**(5/2)/sqrt(I*a*(tan(c + d*x) - I)), x)
 

Maxima [F]

\[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int { \frac {\tan \left (d x + c\right )^{\frac {5}{2}}}{\sqrt {i \, a \tan \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

integrate(tan(d*x + c)^(5/2)/sqrt(I*a*tan(d*x + c) + a), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeDone
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int \frac {{\mathrm {tan}\left (c+d\,x\right )}^{5/2}}{\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}} \,d x \] Input:

int(tan(c + d*x)^(5/2)/(a + a*tan(c + d*x)*1i)^(1/2),x)
 

Output:

int(tan(c + d*x)^(5/2)/(a + a*tan(c + d*x)*1i)^(1/2), x)
 

Reduce [F]

\[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (-2 \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )^{2} i -2 \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )-6 \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, i +\left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )^{3}}{\tan \left (d x +c \right )^{2}+1}d x \right ) \tan \left (d x +c \right )^{2} d i +\left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )^{3}}{\tan \left (d x +c \right )^{2}+1}d x \right ) d i +3 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}}{\tan \left (d x +c \right )^{3}+\tan \left (d x +c \right )}d x \right ) \tan \left (d x +c \right )^{2} d i +3 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}}{\tan \left (d x +c \right )^{3}+\tan \left (d x +c \right )}d x \right ) d i \right )}{a d \left (\tan \left (d x +c \right )^{2}+1\right )} \] Input:

int(tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(1/2),x)
 

Output:

(sqrt(a)*( - 2*sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1)*tan(c + d*x)**2 
*i - 2*sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1)*tan(c + d*x) - 6*sqrt(t 
an(c + d*x))*sqrt(tan(c + d*x)*i + 1)*i + int((sqrt(tan(c + d*x))*sqrt(tan 
(c + d*x)*i + 1)*tan(c + d*x)**3)/(tan(c + d*x)**2 + 1),x)*tan(c + d*x)**2 
*d*i + int((sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1)*tan(c + d*x)**3)/( 
tan(c + d*x)**2 + 1),x)*d*i + 3*int((sqrt(tan(c + d*x))*sqrt(tan(c + d*x)* 
i + 1))/(tan(c + d*x)**3 + tan(c + d*x)),x)*tan(c + d*x)**2*d*i + 3*int((s 
qrt(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1))/(tan(c + d*x)**3 + tan(c + d*x 
)),x)*d*i))/(a*d*(tan(c + d*x)**2 + 1))