\(\int \frac {1}{\tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx\) [217]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 198 \[ \int \frac {1}{\tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx=-\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d}+\frac {1}{d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {7 \sqrt {a+i a \tan (c+d x)}}{5 a d \tan ^{\frac {5}{2}}(c+d x)}+\frac {23 i \sqrt {a+i a \tan (c+d x)}}{15 a d \tan ^{\frac {3}{2}}(c+d x)}+\frac {61 \sqrt {a+i a \tan (c+d x)}}{15 a d \sqrt {\tan (c+d x)}} \] Output:

(-1/2-1/2*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/ 
2))/a^(1/2)/d+1/d/tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(1/2)-7/5*(a+I*a*tan 
(d*x+c))^(1/2)/a/d/tan(d*x+c)^(5/2)+23/15*I*(a+I*a*tan(d*x+c))^(1/2)/a/d/t 
an(d*x+c)^(3/2)+61/15*(a+I*a*tan(d*x+c))^(1/2)/a/d/tan(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 1.43 (sec) , antiderivative size = 141, normalized size of antiderivative = 0.71 \[ \int \frac {1}{\tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx=\frac {\frac {15 \sqrt {2} a \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \tan ^4(c+d x)}{(i a \tan (c+d x))^{3/2}}+\frac {2 \left (-6+2 i \tan (c+d x)+38 \tan ^2(c+d x)+61 i \tan ^3(c+d x)\right )}{\sqrt {a+i a \tan (c+d x)}}}{30 d \tan ^{\frac {5}{2}}(c+d x)} \] Input:

Integrate[1/(Tan[c + d*x]^(7/2)*Sqrt[a + I*a*Tan[c + d*x]]),x]
 

Output:

((15*Sqrt[2]*a*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c 
 + d*x]]]*Tan[c + d*x]^4)/(I*a*Tan[c + d*x])^(3/2) + (2*(-6 + (2*I)*Tan[c 
+ d*x] + 38*Tan[c + d*x]^2 + (61*I)*Tan[c + d*x]^3))/Sqrt[a + I*a*Tan[c + 
d*x]])/(30*d*Tan[c + d*x]^(5/2))
 

Rubi [A] (verified)

Time = 1.12 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.08, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.536, Rules used = {3042, 4042, 27, 3042, 4081, 27, 3042, 4081, 27, 3042, 4081, 27, 3042, 4027, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\tan (c+d x)^{7/2} \sqrt {a+i a \tan (c+d x)}}dx\)

\(\Big \downarrow \) 4042

\(\displaystyle \frac {\int \frac {\sqrt {i \tan (c+d x) a+a} (7 a-6 i a \tan (c+d x))}{2 \tan ^{\frac {7}{2}}(c+d x)}dx}{a^2}+\frac {1}{d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sqrt {i \tan (c+d x) a+a} (7 a-6 i a \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)}dx}{2 a^2}+\frac {1}{d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {i \tan (c+d x) a+a} (7 a-6 i a \tan (c+d x))}{\tan (c+d x)^{7/2}}dx}{2 a^2}+\frac {1}{d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 4081

\(\displaystyle \frac {\frac {2 \int -\frac {\sqrt {i \tan (c+d x) a+a} \left (28 \tan (c+d x) a^2+23 i a^2\right )}{2 \tan ^{\frac {5}{2}}(c+d x)}dx}{5 a}-\frac {14 a \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}}{2 a^2}+\frac {1}{d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (28 \tan (c+d x) a^2+23 i a^2\right )}{\tan ^{\frac {5}{2}}(c+d x)}dx}{5 a}-\frac {14 a \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}}{2 a^2}+\frac {1}{d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (28 \tan (c+d x) a^2+23 i a^2\right )}{\tan (c+d x)^{5/2}}dx}{5 a}-\frac {14 a \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}}{2 a^2}+\frac {1}{d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 4081

\(\displaystyle \frac {-\frac {\frac {2 \int \frac {\sqrt {i \tan (c+d x) a+a} \left (61 a^3-46 i a^3 \tan (c+d x)\right )}{2 \tan ^{\frac {3}{2}}(c+d x)}dx}{3 a}-\frac {46 i a^2 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{5 a}-\frac {14 a \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}}{2 a^2}+\frac {1}{d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (61 a^3-46 i a^3 \tan (c+d x)\right )}{\tan ^{\frac {3}{2}}(c+d x)}dx}{3 a}-\frac {46 i a^2 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{5 a}-\frac {14 a \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}}{2 a^2}+\frac {1}{d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (61 a^3-46 i a^3 \tan (c+d x)\right )}{\tan (c+d x)^{3/2}}dx}{3 a}-\frac {46 i a^2 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{5 a}-\frac {14 a \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}}{2 a^2}+\frac {1}{d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 4081

\(\displaystyle \frac {-\frac {\frac {\frac {2 \int \frac {15 i a^4 \sqrt {i \tan (c+d x) a+a}}{2 \sqrt {\tan (c+d x)}}dx}{a}-\frac {122 a^3 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {46 i a^2 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{5 a}-\frac {14 a \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}}{2 a^2}+\frac {1}{d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {\frac {15 i a^3 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {122 a^3 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {46 i a^2 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{5 a}-\frac {14 a \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}}{2 a^2}+\frac {1}{d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {\frac {15 i a^3 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {122 a^3 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {46 i a^2 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{5 a}-\frac {14 a \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}}{2 a^2}+\frac {1}{d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 4027

\(\displaystyle \frac {-\frac {\frac {\frac {30 a^5 \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}-\frac {122 a^3 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {46 i a^2 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{5 a}-\frac {14 a \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}}{2 a^2}+\frac {1}{d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {-\frac {\frac {\frac {(15+15 i) a^{7/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {122 a^3 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {46 i a^2 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{5 a}-\frac {14 a \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}}{2 a^2}+\frac {1}{d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

Input:

Int[1/(Tan[c + d*x]^(7/2)*Sqrt[a + I*a*Tan[c + d*x]]),x]
 

Output:

1/(d*Tan[c + d*x]^(5/2)*Sqrt[a + I*a*Tan[c + d*x]]) + ((-14*a*Sqrt[a + I*a 
*Tan[c + d*x]])/(5*d*Tan[c + d*x]^(5/2)) - ((((-46*I)/3)*a^2*Sqrt[a + I*a* 
Tan[c + d*x]])/(d*Tan[c + d*x]^(3/2)) + (((15 + 15*I)*a^(7/2)*ArcTanh[((1 
+ I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - (122*a^3 
*Sqrt[a + I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]]))/(3*a))/(5*a))/(2*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4042
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(a + b*Tan[e + f*x])^m*((c + d*Tan[e 
 + f*x])^(n + 1)/(2*f*m*(b*c - a*d))), x] + Simp[1/(2*a*m*(b*c - a*d))   In 
t[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b*c*m - a*d*(2*m 
 + n + 1) + b*d*(m + n + 1)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] 
 && LtQ[m, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n])
 

rule 4081
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*d - B*c)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*(n + 
1)*(c^2 + d^2))), x] - Simp[1/(a*(n + 1)*(c^2 + d^2))   Int[(a + b*Tan[e + 
f*x])^m*(c + d*Tan[e + f*x])^(n + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c* 
m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x], x] /; Fr 
eeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 
0] && LtQ[n, -1]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 472 vs. \(2 (158 ) = 316\).

Time = 1.85 (sec) , antiderivative size = 473, normalized size of antiderivative = 2.39

method result size
derivativedivides \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (30 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{4}-15 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{5}+244 \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )^{4}+15 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}-144 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )^{2}-396 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )^{3}+16 i \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+24 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{60 d a \tan \left (d x +c \right )^{\frac {5}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{2}}\) \(473\)
default \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (30 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{4}-15 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{5}+244 \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )^{4}+15 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}-144 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )^{2}-396 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )^{3}+16 i \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+24 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{60 d a \tan \left (d x +c \right )^{\frac {5}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{2}}\) \(473\)

Input:

int(1/tan(d*x+c)^(7/2)/(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/60/d*(a*(1+I*tan(d*x+c)))^(1/2)/a/tan(d*x+c)^(5/2)*(30*I*2^(1/2)*ln(-(-2 
*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d* 
x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^4-15*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/ 
2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I 
))*a*tan(d*x+c)^5+244*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*t 
an(d*x+c)^4+15*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan 
(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^3-144*(a* 
tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2-396*I*(-I*a)^ 
(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)^3+16*I*(-I*a)^(1/2) 
*tan(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+24*(a*tan(d*x+c)*(1+I*ta 
n(d*x+c)))^(1/2)*(-I*a)^(1/2))/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(-I*a 
)^(1/2)/(-tan(d*x+c)+I)^2
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 456 vs. \(2 (148) = 296\).

Time = 0.11 (sec) , antiderivative size = 456, normalized size of antiderivative = 2.30 \[ \int \frac {1}{\tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx=-\frac {2 \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-103 i \, e^{\left (8 i \, d x + 8 i \, c\right )} + 102 i \, e^{\left (6 i \, d x + 6 i \, c\right )} + 40 i \, e^{\left (4 i \, d x + 4 i \, c\right )} - 150 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 15 i\right )} - 15 \, {\left (a d e^{\left (7 i \, d x + 7 i \, c\right )} - 3 \, a d e^{\left (5 i \, d x + 5 i \, c\right )} + 3 \, a d e^{\left (3 i \, d x + 3 i \, c\right )} - a d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {2 i}{a d^{2}}} \log \left (\frac {1}{4} i \, a d \sqrt {\frac {2 i}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) + 15 \, {\left (a d e^{\left (7 i \, d x + 7 i \, c\right )} - 3 \, a d e^{\left (5 i \, d x + 5 i \, c\right )} + 3 \, a d e^{\left (3 i \, d x + 3 i \, c\right )} - a d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {2 i}{a d^{2}}} \log \left (-\frac {1}{4} i \, a d \sqrt {\frac {2 i}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right )}{60 \, {\left (a d e^{\left (7 i \, d x + 7 i \, c\right )} - 3 \, a d e^{\left (5 i \, d x + 5 i \, c\right )} + 3 \, a d e^{\left (3 i \, d x + 3 i \, c\right )} - a d e^{\left (i \, d x + i \, c\right )}\right )}} \] Input:

integrate(1/tan(d*x+c)^(7/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas 
")
 

Output:

-1/60*(2*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2 
*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(-103*I*e^(8*I*d*x + 8*I*c) + 102*I* 
e^(6*I*d*x + 6*I*c) + 40*I*e^(4*I*d*x + 4*I*c) - 150*I*e^(2*I*d*x + 2*I*c) 
 + 15*I) - 15*(a*d*e^(7*I*d*x + 7*I*c) - 3*a*d*e^(5*I*d*x + 5*I*c) + 3*a*d 
*e^(3*I*d*x + 3*I*c) - a*d*e^(I*d*x + I*c))*sqrt(2*I/(a*d^2))*log(1/4*I*a* 
d*sqrt(2*I/(a*d^2))*e^(I*d*x + I*c) + 1/4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I 
*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^ 
(2*I*d*x + 2*I*c) + 1)) + 15*(a*d*e^(7*I*d*x + 7*I*c) - 3*a*d*e^(5*I*d*x + 
 5*I*c) + 3*a*d*e^(3*I*d*x + 3*I*c) - a*d*e^(I*d*x + I*c))*sqrt(2*I/(a*d^2 
))*log(-1/4*I*a*d*sqrt(2*I/(a*d^2))*e^(I*d*x + I*c) + 1/4*sqrt(2)*sqrt(a/( 
e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 
2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)))/(a*d*e^(7*I*d*x + 7*I*c) - 3*a*d* 
e^(5*I*d*x + 5*I*c) + 3*a*d*e^(3*I*d*x + 3*I*c) - a*d*e^(I*d*x + I*c))
 

Sympy [F]

\[ \int \frac {1}{\tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx=\int \frac {1}{\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \tan ^{\frac {7}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate(1/tan(d*x+c)**(7/2)/(a+I*a*tan(d*x+c))**(1/2),x)
 

Output:

Integral(1/(sqrt(I*a*(tan(c + d*x) - I))*tan(c + d*x)**(7/2)), x)
 

Maxima [F]

\[ \int \frac {1}{\tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx=\int { \frac {1}{\sqrt {i \, a \tan \left (d x + c\right ) + a} \tan \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate(1/tan(d*x+c)^(7/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima 
")
 

Output:

integrate(1/(sqrt(I*a*tan(d*x + c) + a)*tan(d*x + c)^(7/2)), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {1}{\tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(1/tan(d*x+c)^(7/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeDone
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx=\int \frac {1}{{\mathrm {tan}\left (c+d\,x\right )}^{7/2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}} \,d x \] Input:

int(1/(tan(c + d*x)^(7/2)*(a + a*tan(c + d*x)*1i)^(1/2)),x)
 

Output:

int(1/(tan(c + d*x)^(7/2)*(a + a*tan(c + d*x)*1i)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {1}{\tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx=\frac {2 \sqrt {a}\, \left (32 \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )^{4}+16 \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )^{3} i +20 \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )^{2}+4 \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right ) i -3 \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}-6 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}}{\tan \left (d x +c \right )^{3}+\tan \left (d x +c \right )}d x \right ) \tan \left (d x +c \right )^{5} d i -6 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}}{\tan \left (d x +c \right )^{3}+\tan \left (d x +c \right )}d x \right ) \tan \left (d x +c \right )^{3} d i \right )}{15 \tan \left (d x +c \right )^{3} a d \left (\tan \left (d x +c \right )^{2}+1\right )} \] Input:

int(1/tan(d*x+c)^(7/2)/(a+I*a*tan(d*x+c))^(1/2),x)
 

Output:

(2*sqrt(a)*(32*sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1)*tan(c + d*x)**4 
 + 16*sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1)*tan(c + d*x)**3*i + 20*s 
qrt(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1)*tan(c + d*x)**2 + 4*sqrt(tan(c 
+ d*x))*sqrt(tan(c + d*x)*i + 1)*tan(c + d*x)*i - 3*sqrt(tan(c + d*x))*sqr 
t(tan(c + d*x)*i + 1) - 6*int((sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1) 
)/(tan(c + d*x)**3 + tan(c + d*x)),x)*tan(c + d*x)**5*d*i - 6*int((sqrt(ta 
n(c + d*x))*sqrt(tan(c + d*x)*i + 1))/(tan(c + d*x)**3 + tan(c + d*x)),x)* 
tan(c + d*x)**3*d*i))/(15*tan(c + d*x)**3*a*d*(tan(c + d*x)**2 + 1))