\(\int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}} \, dx\) [224]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 201 \[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}} \, dx=-\frac {\left (\frac {1}{4}-\frac {i}{4}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac {1}{3 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}+\frac {5}{2 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {7 \sqrt {a+i a \tan (c+d x)}}{2 a^2 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {13 i \sqrt {a+i a \tan (c+d x)}}{2 a^2 d \sqrt {\tan (c+d x)}} \] Output:

(-1/4+1/4*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/ 
2))/a^(3/2)/d+1/3/d/tan(d*x+c)^(3/2)/(a+I*a*tan(d*x+c))^(3/2)+5/2/a/d/tan( 
d*x+c)^(3/2)/(a+I*a*tan(d*x+c))^(1/2)-7/2*(a+I*a*tan(d*x+c))^(1/2)/a^2/d/t 
an(d*x+c)^(3/2)+13/2*I*(a+I*a*tan(d*x+c))^(1/2)/a^2/d/tan(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.84 (sec) , antiderivative size = 183, normalized size of antiderivative = 0.91 \[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}} \, dx=\frac {3 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) (1+i \tan (c+d x)) \tan (c+d x) \sqrt {i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}+2 a \left (4 i+12 \tan (c+d x)+57 i \tan ^2(c+d x)-39 \tan ^3(c+d x)\right )}{12 a^2 d \tan ^{\frac {3}{2}}(c+d x) (-i+\tan (c+d x)) \sqrt {a+i a \tan (c+d x)}} \] Input:

Integrate[1/(Tan[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^(3/2)),x]
 

Output:

(3*Sqrt[2]*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d 
*x]]]*(1 + I*Tan[c + d*x])*Tan[c + d*x]*Sqrt[I*a*Tan[c + d*x]]*Sqrt[a + I* 
a*Tan[c + d*x]] + 2*a*(4*I + 12*Tan[c + d*x] + (57*I)*Tan[c + d*x]^2 - 39* 
Tan[c + d*x]^3))/(12*a^2*d*Tan[c + d*x]^(3/2)*(-I + Tan[c + d*x])*Sqrt[a + 
 I*a*Tan[c + d*x]])
 

Rubi [A] (verified)

Time = 1.14 (sec) , antiderivative size = 211, normalized size of antiderivative = 1.05, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.536, Rules used = {3042, 4042, 27, 3042, 4079, 27, 3042, 4081, 27, 3042, 4081, 27, 3042, 4027, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\tan (c+d x)^{5/2} (a+i a \tan (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 4042

\(\displaystyle \frac {\int \frac {3 (3 a-2 i a \tan (c+d x))}{2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {i \tan (c+d x) a+a}}dx}{3 a^2}+\frac {1}{3 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {3 a-2 i a \tan (c+d x)}{\tan ^{\frac {5}{2}}(c+d x) \sqrt {i \tan (c+d x) a+a}}dx}{2 a^2}+\frac {1}{3 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {3 a-2 i a \tan (c+d x)}{\tan (c+d x)^{5/2} \sqrt {i \tan (c+d x) a+a}}dx}{2 a^2}+\frac {1}{3 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4079

\(\displaystyle \frac {\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (21 a^2-20 i a^2 \tan (c+d x)\right )}{2 \tan ^{\frac {5}{2}}(c+d x)}dx}{a^2}+\frac {5 a}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}}{2 a^2}+\frac {1}{3 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (21 a^2-20 i a^2 \tan (c+d x)\right )}{\tan ^{\frac {5}{2}}(c+d x)}dx}{2 a^2}+\frac {5 a}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}}{2 a^2}+\frac {1}{3 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (21 a^2-20 i a^2 \tan (c+d x)\right )}{\tan (c+d x)^{5/2}}dx}{2 a^2}+\frac {5 a}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}}{2 a^2}+\frac {1}{3 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4081

\(\displaystyle \frac {\frac {\frac {2 \int -\frac {3 \sqrt {i \tan (c+d x) a+a} \left (14 \tan (c+d x) a^3+13 i a^3\right )}{2 \tan ^{\frac {3}{2}}(c+d x)}dx}{3 a}-\frac {14 a^2 \sqrt {a+i a \tan (c+d x)}}{d \tan ^{\frac {3}{2}}(c+d x)}}{2 a^2}+\frac {5 a}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}}{2 a^2}+\frac {1}{3 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (14 \tan (c+d x) a^3+13 i a^3\right )}{\tan ^{\frac {3}{2}}(c+d x)}dx}{a}-\frac {14 a^2 \sqrt {a+i a \tan (c+d x)}}{d \tan ^{\frac {3}{2}}(c+d x)}}{2 a^2}+\frac {5 a}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}}{2 a^2}+\frac {1}{3 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (14 \tan (c+d x) a^3+13 i a^3\right )}{\tan (c+d x)^{3/2}}dx}{a}-\frac {14 a^2 \sqrt {a+i a \tan (c+d x)}}{d \tan ^{\frac {3}{2}}(c+d x)}}{2 a^2}+\frac {5 a}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}}{2 a^2}+\frac {1}{3 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4081

\(\displaystyle \frac {\frac {-\frac {\frac {2 \int \frac {a^4 \sqrt {i \tan (c+d x) a+a}}{2 \sqrt {\tan (c+d x)}}dx}{a}-\frac {26 i a^3 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{a}-\frac {14 a^2 \sqrt {a+i a \tan (c+d x)}}{d \tan ^{\frac {3}{2}}(c+d x)}}{2 a^2}+\frac {5 a}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}}{2 a^2}+\frac {1}{3 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {-\frac {a^3 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {26 i a^3 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{a}-\frac {14 a^2 \sqrt {a+i a \tan (c+d x)}}{d \tan ^{\frac {3}{2}}(c+d x)}}{2 a^2}+\frac {5 a}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}}{2 a^2}+\frac {1}{3 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {-\frac {a^3 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {26 i a^3 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{a}-\frac {14 a^2 \sqrt {a+i a \tan (c+d x)}}{d \tan ^{\frac {3}{2}}(c+d x)}}{2 a^2}+\frac {5 a}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}}{2 a^2}+\frac {1}{3 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4027

\(\displaystyle \frac {\frac {-\frac {-\frac {2 i a^5 \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}-\frac {26 i a^3 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{a}-\frac {14 a^2 \sqrt {a+i a \tan (c+d x)}}{d \tan ^{\frac {3}{2}}(c+d x)}}{2 a^2}+\frac {5 a}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}}{2 a^2}+\frac {1}{3 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {-\frac {14 a^2 \sqrt {a+i a \tan (c+d x)}}{d \tan ^{\frac {3}{2}}(c+d x)}-\frac {\frac {(1-i) a^{7/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {26 i a^3 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{a}}{2 a^2}+\frac {5 a}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}}{2 a^2}+\frac {1}{3 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}\)

Input:

Int[1/(Tan[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^(3/2)),x]
 

Output:

1/(3*d*Tan[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(3/2)) + ((5*a)/(d*Tan[c 
+ d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]]) + ((-14*a^2*Sqrt[a + I*a*Tan[c + 
d*x]])/(d*Tan[c + d*x]^(3/2)) - (((1 - I)*a^(7/2)*ArcTanh[((1 + I)*Sqrt[a] 
*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - ((26*I)*a^3*Sqrt[a + 
 I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]]))/a)/(2*a^2))/(2*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4042
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(a + b*Tan[e + f*x])^m*((c + d*Tan[e 
 + f*x])^(n + 1)/(2*f*m*(b*c - a*d))), x] + Simp[1/(2*a*m*(b*c - a*d))   In 
t[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b*c*m - a*d*(2*m 
 + n + 1) + b*d*(m + n + 1)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] 
 && LtQ[m, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n])
 

rule 4079
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(a*A + b*B)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(2*f*m*( 
b*c - a*d))), x] + Simp[1/(2*a*m*(b*c - a*d))   Int[(a + b*Tan[e + f*x])^(m 
 + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m 
- b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x] /; Free 
Q[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] 
 && LtQ[m, 0] &&  !GtQ[n, 0]
 

rule 4081
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*d - B*c)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*(n + 
1)*(c^2 + d^2))), x] - Simp[1/(a*(n + 1)*(c^2 + d^2))   Int[(a + b*Tan[e + 
f*x])^m*(c + d*Tan[e + f*x])^(n + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c* 
m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x], x] /; Fr 
eeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 
0] && LtQ[n, -1]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 548 vs. \(2 (159 ) = 318\).

Time = 1.61 (sec) , antiderivative size = 549, normalized size of antiderivative = 2.73

method result size
derivativedivides \(-\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (3 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{5}+384 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )^{3}-9 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}+156 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )^{4}+9 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{4}-32 \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}-276 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )^{2}-3 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{2}-16 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{24 d \,a^{2} \tan \left (d x +c \right )^{\frac {3}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (-\tan \left (d x +c \right )+i\right )^{3} \sqrt {-i a}}\) \(549\)
default \(-\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (3 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{5}+384 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )^{3}-9 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}+156 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )^{4}+9 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{4}-32 \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}-276 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )^{2}-3 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{2}-16 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{24 d \,a^{2} \tan \left (d x +c \right )^{\frac {3}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (-\tan \left (d x +c \right )+i\right )^{3} \sqrt {-i a}}\) \(549\)

Input:

int(1/tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-1/24/d*(a*(1+I*tan(d*x+c)))^(1/2)/a^2/tan(d*x+c)^(3/2)*(3*I*2^(1/2)*ln(-( 
-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan( 
d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^5+384*(a*tan(d*x+c)*(1+I*tan(d*x+c))) 
^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^3-9*I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)* 
(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))* 
a*tan(d*x+c)^3+156*I*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*ta 
n(d*x+c)^4+9*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d 
*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^4-32*tan(d* 
x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)-276*I*(a*tan(d*x+c 
)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2-3*2^(1/2)*ln(-(-2*2^(1 
/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c)) 
/(tan(d*x+c)+I))*a*tan(d*x+c)^2-16*I*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2) 
*(-I*a)^(1/2))/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(-tan(d*x+c)+I)^3/(-I 
*a)^(1/2)
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 435 vs. \(2 (149) = 298\).

Time = 0.11 (sec) , antiderivative size = 435, normalized size of antiderivative = 2.16 \[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}} \, dx=-\frac {\sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (52 \, e^{\left (8 i \, d x + 8 i \, c\right )} - 35 \, e^{\left (6 i \, d x + 6 i \, c\right )} - 69 \, e^{\left (4 i \, d x + 4 i \, c\right )} + 19 \, e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} + 3 \, {\left (a^{2} d e^{\left (7 i \, d x + 7 i \, c\right )} - 2 \, a^{2} d e^{\left (5 i \, d x + 5 i \, c\right )} + a^{2} d e^{\left (3 i \, d x + 3 i \, c\right )}\right )} \sqrt {-\frac {i}{2 \, a^{3} d^{2}}} \log \left (\frac {1}{2} \, a^{2} d \sqrt {-\frac {i}{2 \, a^{3} d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) - 3 \, {\left (a^{2} d e^{\left (7 i \, d x + 7 i \, c\right )} - 2 \, a^{2} d e^{\left (5 i \, d x + 5 i \, c\right )} + a^{2} d e^{\left (3 i \, d x + 3 i \, c\right )}\right )} \sqrt {-\frac {i}{2 \, a^{3} d^{2}}} \log \left (-\frac {1}{2} \, a^{2} d \sqrt {-\frac {i}{2 \, a^{3} d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right )}{12 \, {\left (a^{2} d e^{\left (7 i \, d x + 7 i \, c\right )} - 2 \, a^{2} d e^{\left (5 i \, d x + 5 i \, c\right )} + a^{2} d e^{\left (3 i \, d x + 3 i \, c\right )}\right )}} \] Input:

integrate(1/tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas 
")
 

Output:

-1/12*(sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I 
*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(52*e^(8*I*d*x + 8*I*c) - 35*e^(6*I*d* 
x + 6*I*c) - 69*e^(4*I*d*x + 4*I*c) + 19*e^(2*I*d*x + 2*I*c) + 1) + 3*(a^2 
*d*e^(7*I*d*x + 7*I*c) - 2*a^2*d*e^(5*I*d*x + 5*I*c) + a^2*d*e^(3*I*d*x + 
3*I*c))*sqrt(-1/2*I/(a^3*d^2))*log(1/2*a^2*d*sqrt(-1/2*I/(a^3*d^2))*e^(I*d 
*x + I*c) + 1/4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I* 
d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)) - 
3*(a^2*d*e^(7*I*d*x + 7*I*c) - 2*a^2*d*e^(5*I*d*x + 5*I*c) + a^2*d*e^(3*I* 
d*x + 3*I*c))*sqrt(-1/2*I/(a^3*d^2))*log(-1/2*a^2*d*sqrt(-1/2*I/(a^3*d^2)) 
*e^(I*d*x + I*c) + 1/4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I* 
e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 
 1)))/(a^2*d*e^(7*I*d*x + 7*I*c) - 2*a^2*d*e^(5*I*d*x + 5*I*c) + a^2*d*e^( 
3*I*d*x + 3*I*c))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}} \, dx=\text {Timed out} \] Input:

integrate(1/tan(d*x+c)**(5/2)/(a+I*a*tan(d*x+c))**(3/2),x)
 

Output:

Timed out
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate(1/tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima 
")
 

Output:

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 

Giac [F(-2)]

Exception generated. \[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(1/tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeDone
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}} \, dx=\int \frac {1}{{\mathrm {tan}\left (c+d\,x\right )}^{5/2}\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}} \,d x \] Input:

int(1/(tan(c + d*x)^(5/2)*(a + a*tan(c + d*x)*1i)^(3/2)),x)
 

Output:

int(1/(tan(c + d*x)^(5/2)*(a + a*tan(c + d*x)*1i)^(3/2)), x)
 

Reduce [F]

\[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}} \, dx=\frac {\sqrt {a}\, \left (32 \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )^{3} i -16 \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )^{2}+20 \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right ) i -6 \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}-5 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}}{\tan \left (d x +c \right )^{6} i +\tan \left (d x +c \right )^{5}+\tan \left (d x +c \right )^{4} i +\tan \left (d x +c \right )^{3}}d x \right ) \tan \left (d x +c \right )^{4} d -5 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}}{\tan \left (d x +c \right )^{6} i +\tan \left (d x +c \right )^{5}+\tan \left (d x +c \right )^{4} i +\tan \left (d x +c \right )^{3}}d x \right ) \tan \left (d x +c \right )^{2} d -13 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}}{\tan \left (d x +c \right )^{4} i +\tan \left (d x +c \right )^{3}+\tan \left (d x +c \right )^{2} i +\tan \left (d x +c \right )}d x \right ) \tan \left (d x +c \right )^{4} d -13 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}}{\tan \left (d x +c \right )^{4} i +\tan \left (d x +c \right )^{3}+\tan \left (d x +c \right )^{2} i +\tan \left (d x +c \right )}d x \right ) \tan \left (d x +c \right )^{2} d \right )}{4 \tan \left (d x +c \right )^{2} a^{2} d \left (\tan \left (d x +c \right )^{2}+1\right )} \] Input:

int(1/tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x)
 

Output:

(sqrt(a)*(32*sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1)*tan(c + d*x)**3*i 
 - 16*sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1)*tan(c + d*x)**2 + 20*sqr 
t(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1)*tan(c + d*x)*i - 6*sqrt(tan(c + d 
*x))*sqrt(tan(c + d*x)*i + 1) - 5*int((sqrt(tan(c + d*x))*sqrt(tan(c + d*x 
)*i + 1))/(tan(c + d*x)**6*i + tan(c + d*x)**5 + tan(c + d*x)**4*i + tan(c 
 + d*x)**3),x)*tan(c + d*x)**4*d - 5*int((sqrt(tan(c + d*x))*sqrt(tan(c + 
d*x)*i + 1))/(tan(c + d*x)**6*i + tan(c + d*x)**5 + tan(c + d*x)**4*i + ta 
n(c + d*x)**3),x)*tan(c + d*x)**2*d - 13*int((sqrt(tan(c + d*x))*sqrt(tan( 
c + d*x)*i + 1))/(tan(c + d*x)**4*i + tan(c + d*x)**3 + tan(c + d*x)**2*i 
+ tan(c + d*x)),x)*tan(c + d*x)**4*d - 13*int((sqrt(tan(c + d*x))*sqrt(tan 
(c + d*x)*i + 1))/(tan(c + d*x)**4*i + tan(c + d*x)**3 + tan(c + d*x)**2*i 
 + tan(c + d*x)),x)*tan(c + d*x)**2*d))/(4*tan(c + d*x)**2*a**2*d*(tan(c + 
 d*x)**2 + 1))