\(\int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx\) [227]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 166 \[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {\tan ^{\frac {3}{2}}(c+d x)}{6 a d (a+i a \tan (c+d x))^{3/2}}-\frac {i \sqrt {\tan (c+d x)}}{4 a^2 d \sqrt {a+i a \tan (c+d x)}} \] Output:

(1/8+1/8*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2 
))/a^(5/2)/d+1/5*I*tan(d*x+c)^(5/2)/d/(a+I*a*tan(d*x+c))^(5/2)+1/6*tan(d*x 
+c)^(3/2)/a/d/(a+I*a*tan(d*x+c))^(3/2)-1/4*I*tan(d*x+c)^(1/2)/a^2/d/(a+I*a 
*tan(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 1.51 (sec) , antiderivative size = 125, normalized size of antiderivative = 0.75 \[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac {\sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} \left (15+40 i \tan (c+d x)-37 \tan ^2(c+d x)\right )}{60 a^3 d (-i+\tan (c+d x))^3} \] Input:

Integrate[Tan[c + d*x]^(5/2)/(a + I*a*Tan[c + d*x])^(5/2),x]
 

Output:

((1/8 + I/8)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan 
[c + d*x]]])/(a^(5/2)*d) + (Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]* 
(15 + (40*I)*Tan[c + d*x] - 37*Tan[c + d*x]^2))/(60*a^3*d*(-I + Tan[c + d* 
x])^3)
 

Rubi [A] (verified)

Time = 0.78 (sec) , antiderivative size = 180, normalized size of antiderivative = 1.08, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.321, Rules used = {3042, 4029, 3042, 4029, 3042, 4029, 3042, 4027, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (c+d x)^{5/2}}{(a+i a \tan (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 4029

\(\displaystyle \frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}-\frac {i \int \frac {\tan ^{\frac {3}{2}}(c+d x)}{(i \tan (c+d x) a+a)^{3/2}}dx}{2 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}-\frac {i \int \frac {\tan (c+d x)^{3/2}}{(i \tan (c+d x) a+a)^{3/2}}dx}{2 a}\)

\(\Big \downarrow \) 4029

\(\displaystyle \frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}-\frac {i \left (\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \int \frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}dx}{2 a}\right )}{2 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}-\frac {i \left (\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \int \frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}dx}{2 a}\right )}{2 a}\)

\(\Big \downarrow \) 4029

\(\displaystyle \frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}-\frac {i \left (\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \left (\frac {i \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {i \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )}{2 a}\right )}{2 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}-\frac {i \left (\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \left (\frac {i \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {i \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )}{2 a}\right )}{2 a}\)

\(\Big \downarrow \) 4027

\(\displaystyle \frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}-\frac {i \left (\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \left (\frac {i \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {a \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}\right )}{2 a}\right )}{2 a}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}-\frac {i \left (\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \left (\frac {i \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d}\right )}{2 a}\right )}{2 a}\)

Input:

Int[Tan[c + d*x]^(5/2)/(a + I*a*Tan[c + d*x])^(5/2),x]
 

Output:

((I/5)*Tan[c + d*x]^(5/2))/(d*(a + I*a*Tan[c + d*x])^(5/2)) - ((I/2)*(((I/ 
3)*Tan[c + d*x]^(3/2))/(d*(a + I*a*Tan[c + d*x])^(3/2)) - ((I/2)*(((-1/2 - 
 I/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d* 
x]]])/(Sqrt[a]*d) + (I*Sqrt[Tan[c + d*x]])/(d*Sqrt[a + I*a*Tan[c + d*x]])) 
)/a))/a
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4029
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(a + b*Tan[e + f*x])^m*((c + d*Tan[e 
 + f*x])^n/(2*b*f*m)), x] - Simp[(a*c - b*d)/(2*b^2)   Int[(a + b*Tan[e + f 
*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, 
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && Eq 
Q[m + n, 0] && LeQ[m, -2^(-1)]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 569 vs. \(2 (130 ) = 260\).

Time = 1.62 (sec) , antiderivative size = 570, normalized size of antiderivative = 3.43

method result size
derivativedivides \(-\frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (60 i \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}-15 \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{4}+148 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )^{3}-60 i \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+90 \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{2}-308 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )^{2}-15 \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +60 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}-220 \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{240 d \,a^{3} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{4}}\) \(570\)
default \(-\frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (60 i \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}-15 \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{4}+148 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )^{3}-60 i \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+90 \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{2}-308 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )^{2}-15 \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +60 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}-220 \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{240 d \,a^{3} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{4}}\) \(570\)

Input:

int(tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 

Output:

-1/240/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)/a^3*(60*I*2^(1/2)*ln( 
(2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan( 
d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^3-15*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/ 
2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I 
))*a*tan(d*x+c)^4+148*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*t 
an(d*x+c)^3-60*I*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan 
(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)+90*2^(1/2 
)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a 
*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^2-308*I*(-I*a)^(1/2)*(a*tan(d*x+ 
c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)^2-15*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1 
/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+ 
I))*a+60*I*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-220*tan(d*x+ 
c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2))/(a*tan(d*x+c)*(1+I* 
tan(d*x+c)))^(1/2)/(-I*a)^(1/2)/(-tan(d*x+c)+I)^4
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 332 vs. \(2 (120) = 240\).

Time = 0.11 (sec) , antiderivative size = 332, normalized size of antiderivative = 2.00 \[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=-\frac {{\left (30 \, a^{3} d \sqrt {\frac {i}{8 \, a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (i \, a^{3} d \sqrt {\frac {i}{8 \, a^{5} d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) - 30 \, a^{3} d \sqrt {\frac {i}{8 \, a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (-i \, a^{3} d \sqrt {\frac {i}{8 \, a^{5} d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) - \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-23 i \, e^{\left (6 i \, d x + 6 i \, c\right )} - 12 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 8 i \, e^{\left (2 i \, d x + 2 i \, c\right )} - 3 i\right )}\right )} e^{\left (-5 i \, d x - 5 i \, c\right )}}{120 \, a^{3} d} \] Input:

integrate(tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")
 

Output:

-1/120*(30*a^3*d*sqrt(1/8*I/(a^5*d^2))*e^(5*I*d*x + 5*I*c)*log(I*a^3*d*sqr 
t(1/8*I/(a^5*d^2))*e^(I*d*x + I*c) + 1/4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I* 
c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^( 
2*I*d*x + 2*I*c) + 1)) - 30*a^3*d*sqrt(1/8*I/(a^5*d^2))*e^(5*I*d*x + 5*I*c 
)*log(-I*a^3*d*sqrt(1/8*I/(a^5*d^2))*e^(I*d*x + I*c) + 1/4*sqrt(2)*sqrt(a/ 
(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 
 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)) - sqrt(2)*sqrt(a/(e^(2*I*d*x + 2* 
I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(- 
23*I*e^(6*I*d*x + 6*I*c) - 12*I*e^(4*I*d*x + 4*I*c) + 8*I*e^(2*I*d*x + 2*I 
*c) - 3*I))*e^(-5*I*d*x - 5*I*c)/(a^3*d)
                                                                                    
                                                                                    
 

Sympy [F]

\[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\int \frac {\tan ^{\frac {5}{2}}{\left (c + d x \right )}}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {5}{2}}}\, dx \] Input:

integrate(tan(d*x+c)**(5/2)/(a+I*a*tan(d*x+c))**(5/2),x)
 

Output:

Integral(tan(c + d*x)**(5/2)/(I*a*(tan(c + d*x) - I))**(5/2), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate(tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")
 

Output:

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeDone
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\int \frac {{\mathrm {tan}\left (c+d\,x\right )}^{5/2}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}} \,d x \] Input:

int(tan(c + d*x)^(5/2)/(a + a*tan(c + d*x)*1i)^(5/2),x)
 

Output:

int(tan(c + d*x)^(5/2)/(a + a*tan(c + d*x)*1i)^(5/2), x)
 

Reduce [F]

\[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=-\frac {\int \frac {\sqrt {\tan \left (d x +c \right )}\, \tan \left (d x +c \right )^{2}}{\sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )^{2}-2 \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right ) i -\sqrt {\tan \left (d x +c \right ) i +1}}d x}{\sqrt {a}\, a^{2}} \] Input:

int(tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x)
 

Output:

( - int((sqrt(tan(c + d*x))*tan(c + d*x)**2)/(sqrt(tan(c + d*x)*i + 1)*tan 
(c + d*x)**2 - 2*sqrt(tan(c + d*x)*i + 1)*tan(c + d*x)*i - sqrt(tan(c + d* 
x)*i + 1)),x))/(sqrt(a)*a**2)