\(\int \frac {\tan ^{\frac {10}{3}}(c+d x)}{(a+i a \tan (c+d x))^2} \, dx\) [241]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (warning: unable to verify)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-2)]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 357 \[ \int \frac {\tan ^{\frac {10}{3}}(c+d x)}{(a+i a \tan (c+d x))^2} \, dx=-\frac {49 \arctan \left (\sqrt {3}-2 \sqrt [3]{\tan (c+d x)}\right )}{72 a^2 d}+\frac {49 \arctan \left (\sqrt {3}+2 \sqrt [3]{\tan (c+d x)}\right )}{72 a^2 d}+\frac {5 i \arctan \left (\frac {1-2 \tan ^{\frac {2}{3}}(c+d x)}{\sqrt {3}}\right )}{3 \sqrt {3} a^2 d}+\frac {49 \arctan \left (\sqrt [3]{\tan (c+d x)}\right )}{36 a^2 d}+\frac {5 i \log \left (1+\tan ^{\frac {2}{3}}(c+d x)\right )}{9 a^2 d}-\frac {49 \log \left (1-\sqrt {3} \sqrt [3]{\tan (c+d x)}+\tan ^{\frac {2}{3}}(c+d x)\right )}{48 \sqrt {3} a^2 d}+\frac {49 \log \left (1+\sqrt {3} \sqrt [3]{\tan (c+d x)}+\tan ^{\frac {2}{3}}(c+d x)\right )}{48 \sqrt {3} a^2 d}-\frac {5 i \log \left (1-\tan ^{\frac {2}{3}}(c+d x)+\tan ^{\frac {4}{3}}(c+d x)\right )}{18 a^2 d}-\frac {49 \sqrt [3]{\tan (c+d x)}}{12 a^2 d}+\frac {5 i \tan ^{\frac {4}{3}}(c+d x)}{6 a^2 d (1+i \tan (c+d x))}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2} \] Output:

49/72*arctan(-3^(1/2)+2*tan(d*x+c)^(1/3))/a^2/d+49/72*arctan(3^(1/2)+2*tan 
(d*x+c)^(1/3))/a^2/d+5/9*I*arctan(1/3*(1-2*tan(d*x+c)^(2/3))*3^(1/2))*3^(1 
/2)/a^2/d+49/36*arctan(tan(d*x+c)^(1/3))/a^2/d+5/9*I*ln(1+tan(d*x+c)^(2/3) 
)/a^2/d-49/144*ln(1-3^(1/2)*tan(d*x+c)^(1/3)+tan(d*x+c)^(2/3))*3^(1/2)/a^2 
/d+49/144*ln(1+3^(1/2)*tan(d*x+c)^(1/3)+tan(d*x+c)^(2/3))*3^(1/2)/a^2/d-5/ 
18*I*ln(1-tan(d*x+c)^(2/3)+tan(d*x+c)^(4/3))/a^2/d-49/12*tan(d*x+c)^(1/3)/ 
a^2/d+5/6*I*tan(d*x+c)^(4/3)/a^2/d/(1+I*tan(d*x+c))-1/4*tan(d*x+c)^(7/3)/d 
/(a+I*a*tan(d*x+c))^2
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 2.48 (sec) , antiderivative size = 192, normalized size of antiderivative = 0.54 \[ \int \frac {\tan ^{\frac {10}{3}}(c+d x)}{(a+i a \tan (c+d x))^2} \, dx=-\frac {\sec ^2(c+d x) \left (9\ 2^{2/3} e^{2 i (c+d x)} \sqrt [3]{1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{3},\frac {4}{3},\frac {1}{2} \left (1-e^{2 i (c+d x)}\right )\right )+2 \left (-13-85 \cos (2 (c+d x))+89 \operatorname {Hypergeometric2F1}\left (\frac {1}{3},1,\frac {4}{3},-\frac {-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}\right ) (\cos (2 (c+d x))+i \sin (2 (c+d x)))-88 i \sin (2 (c+d x))\right )\right ) \sqrt [3]{\tan (c+d x)}}{48 a^2 d (-i+\tan (c+d x))^2} \] Input:

Integrate[Tan[c + d*x]^(10/3)/(a + I*a*Tan[c + d*x])^2,x]
 

Output:

-1/48*(Sec[c + d*x]^2*(9*2^(2/3)*E^((2*I)*(c + d*x))*(1 + E^((2*I)*(c + d* 
x)))^(1/3)*Hypergeometric2F1[1/3, 1/3, 4/3, (1 - E^((2*I)*(c + d*x)))/2] + 
 2*(-13 - 85*Cos[2*(c + d*x)] + 89*Hypergeometric2F1[1/3, 1, 4/3, -((-1 + 
E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x))))]*(Cos[2*(c + d*x)] + I*Sin 
[2*(c + d*x)]) - (88*I)*Sin[2*(c + d*x)]))*Tan[c + d*x]^(1/3))/(a^2*d*(-I 
+ Tan[c + d*x])^2)
 

Rubi [A] (warning: unable to verify)

Time = 1.15 (sec) , antiderivative size = 304, normalized size of antiderivative = 0.85, number of steps used = 25, number of rules used = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.923, Rules used = {3042, 4041, 27, 3042, 4078, 27, 3042, 4011, 3042, 4021, 3042, 3957, 266, 753, 27, 216, 807, 821, 16, 1142, 25, 1083, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^{\frac {10}{3}}(c+d x)}{(a+i a \tan (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (c+d x)^{10/3}}{(a+i a \tan (c+d x))^2}dx\)

\(\Big \downarrow \) 4041

\(\displaystyle -\frac {\int -\frac {\tan ^{\frac {4}{3}}(c+d x) (7 a-13 i a \tan (c+d x))}{3 (i \tan (c+d x) a+a)}dx}{4 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\tan ^{\frac {4}{3}}(c+d x) (7 a-13 i a \tan (c+d x))}{i \tan (c+d x) a+a}dx}{12 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\tan (c+d x)^{4/3} (7 a-13 i a \tan (c+d x))}{i \tan (c+d x) a+a}dx}{12 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

\(\Big \downarrow \) 4078

\(\displaystyle \frac {\frac {10 i \tan ^{\frac {4}{3}}(c+d x)}{d (1+i \tan (c+d x))}-\frac {\int \frac {2}{3} \sqrt [3]{\tan (c+d x)} \left (49 \tan (c+d x) a^2+40 i a^2\right )dx}{2 a^2}}{12 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {10 i \tan ^{\frac {4}{3}}(c+d x)}{d (1+i \tan (c+d x))}-\frac {\int \sqrt [3]{\tan (c+d x)} \left (49 \tan (c+d x) a^2+40 i a^2\right )dx}{3 a^2}}{12 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {10 i \tan ^{\frac {4}{3}}(c+d x)}{d (1+i \tan (c+d x))}-\frac {\int \sqrt [3]{\tan (c+d x)} \left (49 \tan (c+d x) a^2+40 i a^2\right )dx}{3 a^2}}{12 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

\(\Big \downarrow \) 4011

\(\displaystyle \frac {\frac {10 i \tan ^{\frac {4}{3}}(c+d x)}{d (1+i \tan (c+d x))}-\frac {\frac {147 a^2 \sqrt [3]{\tan (c+d x)}}{d}+\int \frac {40 i a^2 \tan (c+d x)-49 a^2}{\tan ^{\frac {2}{3}}(c+d x)}dx}{3 a^2}}{12 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {10 i \tan ^{\frac {4}{3}}(c+d x)}{d (1+i \tan (c+d x))}-\frac {\frac {147 a^2 \sqrt [3]{\tan (c+d x)}}{d}+\int \frac {40 i a^2 \tan (c+d x)-49 a^2}{\tan (c+d x)^{2/3}}dx}{3 a^2}}{12 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

\(\Big \downarrow \) 4021

\(\displaystyle \frac {\frac {10 i \tan ^{\frac {4}{3}}(c+d x)}{d (1+i \tan (c+d x))}-\frac {-49 a^2 \int \frac {1}{\tan ^{\frac {2}{3}}(c+d x)}dx+40 i a^2 \int \sqrt [3]{\tan (c+d x)}dx+\frac {147 a^2 \sqrt [3]{\tan (c+d x)}}{d}}{3 a^2}}{12 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {10 i \tan ^{\frac {4}{3}}(c+d x)}{d (1+i \tan (c+d x))}-\frac {-49 a^2 \int \frac {1}{\tan (c+d x)^{2/3}}dx+40 i a^2 \int \sqrt [3]{\tan (c+d x)}dx+\frac {147 a^2 \sqrt [3]{\tan (c+d x)}}{d}}{3 a^2}}{12 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

\(\Big \downarrow \) 3957

\(\displaystyle \frac {\frac {10 i \tan ^{\frac {4}{3}}(c+d x)}{d (1+i \tan (c+d x))}-\frac {\frac {40 i a^2 \int \frac {\sqrt [3]{\tan (c+d x)}}{\tan ^2(c+d x)+1}d\tan (c+d x)}{d}-\frac {49 a^2 \int \frac {1}{\tan ^{\frac {2}{3}}(c+d x) \left (\tan ^2(c+d x)+1\right )}d\tan (c+d x)}{d}+\frac {147 a^2 \sqrt [3]{\tan (c+d x)}}{d}}{3 a^2}}{12 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {\frac {10 i \tan ^{\frac {4}{3}}(c+d x)}{d (1+i \tan (c+d x))}-\frac {-\frac {147 a^2 \int \frac {1}{\tan ^2(c+d x)+1}d\sqrt [3]{\tan (c+d x)}}{d}+\frac {120 i a^2 \int \frac {\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt [3]{\tan (c+d x)}}{d}+\frac {147 a^2 \sqrt [3]{\tan (c+d x)}}{d}}{3 a^2}}{12 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

\(\Big \downarrow \) 753

\(\displaystyle \frac {\frac {10 i \tan ^{\frac {4}{3}}(c+d x)}{d (1+i \tan (c+d x))}-\frac {-\frac {147 a^2 \left (\frac {1}{3} \int \frac {1}{\tan ^{\frac {2}{3}}(c+d x)+1}d\sqrt [3]{\tan (c+d x)}+\frac {1}{3} \int \frac {2-\sqrt {3} \sqrt [3]{\tan (c+d x)}}{2 \left (\tan ^{\frac {2}{3}}(c+d x)-\sqrt {3} \sqrt [3]{\tan (c+d x)}+1\right )}d\sqrt [3]{\tan (c+d x)}+\frac {1}{3} \int \frac {\sqrt {3} \sqrt [3]{\tan (c+d x)}+2}{2 \left (\tan ^{\frac {2}{3}}(c+d x)+\sqrt {3} \sqrt [3]{\tan (c+d x)}+1\right )}d\sqrt [3]{\tan (c+d x)}\right )}{d}+\frac {120 i a^2 \int \frac {\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt [3]{\tan (c+d x)}}{d}+\frac {147 a^2 \sqrt [3]{\tan (c+d x)}}{d}}{3 a^2}}{12 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {10 i \tan ^{\frac {4}{3}}(c+d x)}{d (1+i \tan (c+d x))}-\frac {-\frac {147 a^2 \left (\frac {1}{3} \int \frac {1}{\tan ^{\frac {2}{3}}(c+d x)+1}d\sqrt [3]{\tan (c+d x)}+\frac {1}{6} \int \frac {2-\sqrt {3} \sqrt [3]{\tan (c+d x)}}{\tan ^{\frac {2}{3}}(c+d x)-\sqrt {3} \sqrt [3]{\tan (c+d x)}+1}d\sqrt [3]{\tan (c+d x)}+\frac {1}{6} \int \frac {\sqrt {3} \sqrt [3]{\tan (c+d x)}+2}{\tan ^{\frac {2}{3}}(c+d x)+\sqrt {3} \sqrt [3]{\tan (c+d x)}+1}d\sqrt [3]{\tan (c+d x)}\right )}{d}+\frac {120 i a^2 \int \frac {\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt [3]{\tan (c+d x)}}{d}+\frac {147 a^2 \sqrt [3]{\tan (c+d x)}}{d}}{3 a^2}}{12 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {10 i \tan ^{\frac {4}{3}}(c+d x)}{d (1+i \tan (c+d x))}-\frac {-\frac {147 a^2 \left (\frac {1}{6} \int \frac {2-\sqrt {3} \sqrt [3]{\tan (c+d x)}}{\tan ^{\frac {2}{3}}(c+d x)-\sqrt {3} \sqrt [3]{\tan (c+d x)}+1}d\sqrt [3]{\tan (c+d x)}+\frac {1}{6} \int \frac {\sqrt {3} \sqrt [3]{\tan (c+d x)}+2}{\tan ^{\frac {2}{3}}(c+d x)+\sqrt {3} \sqrt [3]{\tan (c+d x)}+1}d\sqrt [3]{\tan (c+d x)}+\frac {1}{3} \arctan \left (\sqrt [3]{\tan (c+d x)}\right )\right )}{d}+\frac {120 i a^2 \int \frac {\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt [3]{\tan (c+d x)}}{d}+\frac {147 a^2 \sqrt [3]{\tan (c+d x)}}{d}}{3 a^2}}{12 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

\(\Big \downarrow \) 807

\(\displaystyle \frac {\frac {10 i \tan ^{\frac {4}{3}}(c+d x)}{d (1+i \tan (c+d x))}-\frac {-\frac {147 a^2 \left (\frac {1}{6} \int \frac {2-\sqrt {3} \sqrt [3]{\tan (c+d x)}}{\tan ^{\frac {2}{3}}(c+d x)-\sqrt {3} \sqrt [3]{\tan (c+d x)}+1}d\sqrt [3]{\tan (c+d x)}+\frac {1}{6} \int \frac {\sqrt {3} \sqrt [3]{\tan (c+d x)}+2}{\tan ^{\frac {2}{3}}(c+d x)+\sqrt {3} \sqrt [3]{\tan (c+d x)}+1}d\sqrt [3]{\tan (c+d x)}+\frac {1}{3} \arctan \left (\sqrt [3]{\tan (c+d x)}\right )\right )}{d}+\frac {60 i a^2 \int \frac {\tan ^{\frac {2}{3}}(c+d x)}{\tan (c+d x)+1}d\tan ^{\frac {2}{3}}(c+d x)}{d}+\frac {147 a^2 \sqrt [3]{\tan (c+d x)}}{d}}{3 a^2}}{12 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

\(\Big \downarrow \) 821

\(\displaystyle \frac {\frac {10 i \tan ^{\frac {4}{3}}(c+d x)}{d (1+i \tan (c+d x))}-\frac {-\frac {147 a^2 \left (\frac {1}{6} \int \frac {2-\sqrt {3} \sqrt [3]{\tan (c+d x)}}{\tan ^{\frac {2}{3}}(c+d x)-\sqrt {3} \sqrt [3]{\tan (c+d x)}+1}d\sqrt [3]{\tan (c+d x)}+\frac {1}{6} \int \frac {\sqrt {3} \sqrt [3]{\tan (c+d x)}+2}{\tan ^{\frac {2}{3}}(c+d x)+\sqrt {3} \sqrt [3]{\tan (c+d x)}+1}d\sqrt [3]{\tan (c+d x)}+\frac {1}{3} \arctan \left (\sqrt [3]{\tan (c+d x)}\right )\right )}{d}+\frac {60 i a^2 \left (\frac {1}{3} \int \left (\tan ^{\frac {2}{3}}(c+d x)+1\right )d\tan ^{\frac {2}{3}}(c+d x)-\frac {1}{3} \int \frac {1}{\tan ^{\frac {2}{3}}(c+d x)+1}d\tan ^{\frac {2}{3}}(c+d x)\right )}{d}+\frac {147 a^2 \sqrt [3]{\tan (c+d x)}}{d}}{3 a^2}}{12 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {\frac {10 i \tan ^{\frac {4}{3}}(c+d x)}{d (1+i \tan (c+d x))}-\frac {-\frac {147 a^2 \left (\frac {1}{6} \int \frac {2-\sqrt {3} \sqrt [3]{\tan (c+d x)}}{\tan ^{\frac {2}{3}}(c+d x)-\sqrt {3} \sqrt [3]{\tan (c+d x)}+1}d\sqrt [3]{\tan (c+d x)}+\frac {1}{6} \int \frac {\sqrt {3} \sqrt [3]{\tan (c+d x)}+2}{\tan ^{\frac {2}{3}}(c+d x)+\sqrt {3} \sqrt [3]{\tan (c+d x)}+1}d\sqrt [3]{\tan (c+d x)}+\frac {1}{3} \arctan \left (\sqrt [3]{\tan (c+d x)}\right )\right )}{d}+\frac {60 i a^2 \left (\frac {1}{3} \int \left (\tan ^{\frac {2}{3}}(c+d x)+1\right )d\tan ^{\frac {2}{3}}(c+d x)-\frac {1}{3} \log \left (\tan ^{\frac {2}{3}}(c+d x)+1\right )\right )}{d}+\frac {147 a^2 \sqrt [3]{\tan (c+d x)}}{d}}{3 a^2}}{12 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {\frac {10 i \tan ^{\frac {4}{3}}(c+d x)}{d (1+i \tan (c+d x))}-\frac {-\frac {147 a^2 \left (\frac {1}{6} \left (\frac {1}{2} \int \frac {1}{\tan ^{\frac {2}{3}}(c+d x)-\sqrt {3} \sqrt [3]{\tan (c+d x)}+1}d\sqrt [3]{\tan (c+d x)}-\frac {1}{2} \sqrt {3} \int -\frac {\sqrt {3}-2 \sqrt [3]{\tan (c+d x)}}{\tan ^{\frac {2}{3}}(c+d x)-\sqrt {3} \sqrt [3]{\tan (c+d x)}+1}d\sqrt [3]{\tan (c+d x)}\right )+\frac {1}{6} \left (\frac {1}{2} \int \frac {1}{\tan ^{\frac {2}{3}}(c+d x)+\sqrt {3} \sqrt [3]{\tan (c+d x)}+1}d\sqrt [3]{\tan (c+d x)}+\frac {1}{2} \sqrt {3} \int \frac {2 \sqrt [3]{\tan (c+d x)}+\sqrt {3}}{\tan ^{\frac {2}{3}}(c+d x)+\sqrt {3} \sqrt [3]{\tan (c+d x)}+1}d\sqrt [3]{\tan (c+d x)}\right )+\frac {1}{3} \arctan \left (\sqrt [3]{\tan (c+d x)}\right )\right )}{d}+\frac {60 i a^2 \left (\frac {1}{3} \left (\frac {3}{2} \int 1d\tan ^{\frac {2}{3}}(c+d x)+\frac {1}{2} \int \left (2 \tan ^{\frac {2}{3}}(c+d x)-1\right )d\tan ^{\frac {2}{3}}(c+d x)\right )-\frac {1}{3} \log \left (\tan ^{\frac {2}{3}}(c+d x)+1\right )\right )}{d}+\frac {147 a^2 \sqrt [3]{\tan (c+d x)}}{d}}{3 a^2}}{12 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {10 i \tan ^{\frac {4}{3}}(c+d x)}{d (1+i \tan (c+d x))}-\frac {-\frac {147 a^2 \left (\frac {1}{6} \left (\frac {1}{2} \int \frac {1}{\tan ^{\frac {2}{3}}(c+d x)-\sqrt {3} \sqrt [3]{\tan (c+d x)}+1}d\sqrt [3]{\tan (c+d x)}+\frac {1}{2} \sqrt {3} \int \frac {\sqrt {3}-2 \sqrt [3]{\tan (c+d x)}}{\tan ^{\frac {2}{3}}(c+d x)-\sqrt {3} \sqrt [3]{\tan (c+d x)}+1}d\sqrt [3]{\tan (c+d x)}\right )+\frac {1}{6} \left (\frac {1}{2} \int \frac {1}{\tan ^{\frac {2}{3}}(c+d x)+\sqrt {3} \sqrt [3]{\tan (c+d x)}+1}d\sqrt [3]{\tan (c+d x)}+\frac {1}{2} \sqrt {3} \int \frac {2 \sqrt [3]{\tan (c+d x)}+\sqrt {3}}{\tan ^{\frac {2}{3}}(c+d x)+\sqrt {3} \sqrt [3]{\tan (c+d x)}+1}d\sqrt [3]{\tan (c+d x)}\right )+\frac {1}{3} \arctan \left (\sqrt [3]{\tan (c+d x)}\right )\right )}{d}+\frac {60 i a^2 \left (\frac {1}{3} \left (\frac {3}{2} \int 1d\tan ^{\frac {2}{3}}(c+d x)-\frac {1}{2} \int \left (1-2 \tan ^{\frac {2}{3}}(c+d x)\right )d\tan ^{\frac {2}{3}}(c+d x)\right )-\frac {1}{3} \log \left (\tan ^{\frac {2}{3}}(c+d x)+1\right )\right )}{d}+\frac {147 a^2 \sqrt [3]{\tan (c+d x)}}{d}}{3 a^2}}{12 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {\frac {10 i \tan ^{\frac {4}{3}}(c+d x)}{d (1+i \tan (c+d x))}-\frac {-\frac {147 a^2 \left (\frac {1}{6} \left (\frac {1}{2} \sqrt {3} \int \frac {\sqrt {3}-2 \sqrt [3]{\tan (c+d x)}}{\tan ^{\frac {2}{3}}(c+d x)-\sqrt {3} \sqrt [3]{\tan (c+d x)}+1}d\sqrt [3]{\tan (c+d x)}-\int \frac {1}{-\tan ^{\frac {2}{3}}(c+d x)-1}d\left (2 \sqrt [3]{\tan (c+d x)}-\sqrt {3}\right )\right )+\frac {1}{6} \left (\frac {1}{2} \sqrt {3} \int \frac {2 \sqrt [3]{\tan (c+d x)}+\sqrt {3}}{\tan ^{\frac {2}{3}}(c+d x)+\sqrt {3} \sqrt [3]{\tan (c+d x)}+1}d\sqrt [3]{\tan (c+d x)}-\int \frac {1}{-\tan ^{\frac {2}{3}}(c+d x)-1}d\left (2 \sqrt [3]{\tan (c+d x)}+\sqrt {3}\right )\right )+\frac {1}{3} \arctan \left (\sqrt [3]{\tan (c+d x)}\right )\right )}{d}+\frac {60 i a^2 \left (\frac {1}{3} \left (-3 \int \frac {1}{-2 \tan ^{\frac {2}{3}}(c+d x)-2}d\left (2 \tan ^{\frac {2}{3}}(c+d x)-1\right )-\frac {1}{2} \int \left (1-2 \tan ^{\frac {2}{3}}(c+d x)\right )d\tan ^{\frac {2}{3}}(c+d x)\right )-\frac {1}{3} \log \left (\tan ^{\frac {2}{3}}(c+d x)+1\right )\right )}{d}+\frac {147 a^2 \sqrt [3]{\tan (c+d x)}}{d}}{3 a^2}}{12 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {10 i \tan ^{\frac {4}{3}}(c+d x)}{d (1+i \tan (c+d x))}-\frac {-\frac {147 a^2 \left (\frac {1}{6} \left (\frac {1}{2} \sqrt {3} \int \frac {\sqrt {3}-2 \sqrt [3]{\tan (c+d x)}}{\tan ^{\frac {2}{3}}(c+d x)-\sqrt {3} \sqrt [3]{\tan (c+d x)}+1}d\sqrt [3]{\tan (c+d x)}-\arctan \left (\sqrt {3}-2 \sqrt [3]{\tan (c+d x)}\right )\right )+\frac {1}{6} \left (\frac {1}{2} \sqrt {3} \int \frac {2 \sqrt [3]{\tan (c+d x)}+\sqrt {3}}{\tan ^{\frac {2}{3}}(c+d x)+\sqrt {3} \sqrt [3]{\tan (c+d x)}+1}d\sqrt [3]{\tan (c+d x)}+\arctan \left (2 \sqrt [3]{\tan (c+d x)}+\sqrt {3}\right )\right )+\frac {1}{3} \arctan \left (\sqrt [3]{\tan (c+d x)}\right )\right )}{d}+\frac {60 i a^2 \left (\frac {1}{3} \left (\sqrt {3} \arctan \left (\frac {2 \tan ^{\frac {2}{3}}(c+d x)-1}{\sqrt {3}}\right )-\frac {1}{2} \int \left (1-2 \tan ^{\frac {2}{3}}(c+d x)\right )d\tan ^{\frac {2}{3}}(c+d x)\right )-\frac {1}{3} \log \left (\tan ^{\frac {2}{3}}(c+d x)+1\right )\right )}{d}+\frac {147 a^2 \sqrt [3]{\tan (c+d x)}}{d}}{3 a^2}}{12 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\frac {10 i \tan ^{\frac {4}{3}}(c+d x)}{d (1+i \tan (c+d x))}-\frac {\frac {60 i a^2 \left (\frac {\arctan \left (\frac {2 \tan ^{\frac {2}{3}}(c+d x)-1}{\sqrt {3}}\right )}{\sqrt {3}}-\frac {1}{3} \log \left (\tan ^{\frac {2}{3}}(c+d x)+1\right )\right )}{d}-\frac {147 a^2 \left (\frac {1}{3} \arctan \left (\sqrt [3]{\tan (c+d x)}\right )+\frac {1}{6} \left (-\arctan \left (\sqrt {3}-2 \sqrt [3]{\tan (c+d x)}\right )-\frac {1}{2} \sqrt {3} \log \left (\tan ^{\frac {2}{3}}(c+d x)-\sqrt {3} \sqrt [3]{\tan (c+d x)}+1\right )\right )+\frac {1}{6} \left (\arctan \left (2 \sqrt [3]{\tan (c+d x)}+\sqrt {3}\right )+\frac {1}{2} \sqrt {3} \log \left (\tan ^{\frac {2}{3}}(c+d x)+\sqrt {3} \sqrt [3]{\tan (c+d x)}+1\right )\right )\right )}{d}+\frac {147 a^2 \sqrt [3]{\tan (c+d x)}}{d}}{3 a^2}}{12 a^2}-\frac {\tan ^{\frac {7}{3}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\)

Input:

Int[Tan[c + d*x]^(10/3)/(a + I*a*Tan[c + d*x])^2,x]
 

Output:

-1/4*Tan[c + d*x]^(7/3)/(d*(a + I*a*Tan[c + d*x])^2) + (-1/3*(((60*I)*a^2* 
(ArcTan[(-1 + 2*Tan[c + d*x]^(2/3))/Sqrt[3]]/Sqrt[3] - Log[1 + Tan[c + d*x 
]^(2/3)]/3))/d - (147*a^2*(ArcTan[Tan[c + d*x]^(1/3)]/3 + (-ArcTan[Sqrt[3] 
 - 2*Tan[c + d*x]^(1/3)] - (Sqrt[3]*Log[1 - Sqrt[3]*Tan[c + d*x]^(1/3) + T 
an[c + d*x]^(2/3)])/2)/6 + (ArcTan[Sqrt[3] + 2*Tan[c + d*x]^(1/3)] + (Sqrt 
[3]*Log[1 + Sqrt[3]*Tan[c + d*x]^(1/3) + Tan[c + d*x]^(2/3)])/2)/6))/d + ( 
147*a^2*Tan[c + d*x]^(1/3))/d)/a^2 + ((10*I)*Tan[c + d*x]^(4/3))/(d*(1 + I 
*Tan[c + d*x])))/(12*a^2)
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 753
Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> Module[{r = Numerator[Rt[a/ 
b, n]], s = Denominator[Rt[a/b, n]], k, u, v}, Simp[u = Int[(r - s*Cos[(2*k 
 - 1)*(Pi/n)]*x)/(r^2 - 2*r*s*Cos[(2*k - 1)*(Pi/n)]*x + s^2*x^2), x] + Int[ 
(r + s*Cos[(2*k - 1)*(Pi/n)]*x)/(r^2 + 2*r*s*Cos[(2*k - 1)*(Pi/n)]*x + s^2* 
x^2), x]; 2*(r^2/(a*n))   Int[1/(r^2 + s^2*x^2), x] + 2*(r/(a*n))   Sum[u, 
{k, 1, (n - 2)/4}], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 2)/4, 0] && PosQ[a 
/b]
 

rule 807
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m 
+ 1, n]}, Simp[1/k   Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, 
x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]
 

rule 821
Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> Simp[-(3*Rt[a, 3]*Rt[b, 3])^(- 
1)   Int[1/(Rt[a, 3] + Rt[b, 3]*x), x], x] + Simp[1/(3*Rt[a, 3]*Rt[b, 3]) 
 Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2 
*x^2), x], x] /; FreeQ[{a, b}, x]
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3957
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Subst[Int 
[x^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{b, c, d, n}, x] && 
!IntegerQ[n]
 

rule 4011
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[d*((a + b*Tan[e + f*x])^m/(f*m)), x] + Int 
[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x], x] 
, x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 
 0] && GtQ[m, 0]
 

rule 4021
Int[((b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Tan[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Tan[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x] && NeQ[c^ 
2 + d^2, 0] &&  !IntegerQ[2*m]
 

rule 4041
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b*c - a*d))*(a + b*Tan[e + f*x])^m* 
((c + d*Tan[e + f*x])^(n - 1)/(2*a*f*m)), x] + Simp[1/(2*a^2*m)   Int[(a + 
b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 2)*Simp[c*(a*c*m + b*d*(n 
 - 1)) - d*(b*c*m + a*d*(n - 1)) - d*(b*d*(m - n + 1) - a*c*(m + n - 1))*Ta 
n[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] 
 && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, 0] && GtQ[n, 1] && (In 
tegerQ[m] || IntegersQ[2*m, 2*n])
 

rule 4078
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-(A*b - a*B))*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(2*a*f*m)), 
 x] + Simp[1/(2*a^2*m)   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f* 
x])^(n - 1)*Simp[A*(a*c*m + b*d*n) - B*(b*c*m + a*d*n) - d*(b*B*(m - n) - a 
*A*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] 
&& NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] && GtQ[n, 0]
 
Maple [A] (verified)

Time = 1.10 (sec) , antiderivative size = 235, normalized size of antiderivative = 0.66

method result size
derivativedivides \(\frac {-3 \tan \left (d x +c \right )^{\frac {1}{3}}+\frac {i \ln \left (i \tan \left (d x +c \right )^{\frac {1}{3}}+\tan \left (d x +c \right )^{\frac {2}{3}}-1\right )}{16}+\frac {\sqrt {3}\, \operatorname {arctanh}\left (\frac {\left (i+2 \tan \left (d x +c \right )^{\frac {1}{3}}\right ) \sqrt {3}}{3}\right )}{8}-\frac {-30 \tan \left (d x +c \right )-4 i \tan \left (d x +c \right )^{\frac {2}{3}}-4 \tan \left (d x +c \right )^{\frac {1}{3}}+28 i}{72 \left (-i \tan \left (d x +c \right )^{\frac {1}{3}}+\tan \left (d x +c \right )^{\frac {2}{3}}-1\right )^{2}}-\frac {89 i \ln \left (-i \tan \left (d x +c \right )^{\frac {1}{3}}+\tan \left (d x +c \right )^{\frac {2}{3}}-1\right )}{144}+\frac {89 \sqrt {3}\, \operatorname {arctanh}\left (\frac {\left (-i+2 \tan \left (d x +c \right )^{\frac {1}{3}}\right ) \sqrt {3}}{3}\right )}{72}-\frac {i \ln \left (\tan \left (d x +c \right )^{\frac {1}{3}}-i\right )}{8}+\frac {i}{36 \left (\tan \left (d x +c \right )^{\frac {1}{3}}+i\right )^{2}}+\frac {89 i \ln \left (\tan \left (d x +c \right )^{\frac {1}{3}}+i\right )}{72}-\frac {5}{12 \left (\tan \left (d x +c \right )^{\frac {1}{3}}+i\right )}}{d \,a^{2}}\) \(235\)
default \(\frac {-3 \tan \left (d x +c \right )^{\frac {1}{3}}+\frac {i \ln \left (i \tan \left (d x +c \right )^{\frac {1}{3}}+\tan \left (d x +c \right )^{\frac {2}{3}}-1\right )}{16}+\frac {\sqrt {3}\, \operatorname {arctanh}\left (\frac {\left (i+2 \tan \left (d x +c \right )^{\frac {1}{3}}\right ) \sqrt {3}}{3}\right )}{8}-\frac {-30 \tan \left (d x +c \right )-4 i \tan \left (d x +c \right )^{\frac {2}{3}}-4 \tan \left (d x +c \right )^{\frac {1}{3}}+28 i}{72 \left (-i \tan \left (d x +c \right )^{\frac {1}{3}}+\tan \left (d x +c \right )^{\frac {2}{3}}-1\right )^{2}}-\frac {89 i \ln \left (-i \tan \left (d x +c \right )^{\frac {1}{3}}+\tan \left (d x +c \right )^{\frac {2}{3}}-1\right )}{144}+\frac {89 \sqrt {3}\, \operatorname {arctanh}\left (\frac {\left (-i+2 \tan \left (d x +c \right )^{\frac {1}{3}}\right ) \sqrt {3}}{3}\right )}{72}-\frac {i \ln \left (\tan \left (d x +c \right )^{\frac {1}{3}}-i\right )}{8}+\frac {i}{36 \left (\tan \left (d x +c \right )^{\frac {1}{3}}+i\right )^{2}}+\frac {89 i \ln \left (\tan \left (d x +c \right )^{\frac {1}{3}}+i\right )}{72}-\frac {5}{12 \left (\tan \left (d x +c \right )^{\frac {1}{3}}+i\right )}}{d \,a^{2}}\) \(235\)

Input:

int(tan(d*x+c)^(10/3)/(a+I*a*tan(d*x+c))^2,x,method=_RETURNVERBOSE)
 

Output:

1/d/a^2*(-3*tan(d*x+c)^(1/3)+1/16*I*ln(I*tan(d*x+c)^(1/3)+tan(d*x+c)^(2/3) 
-1)+1/8*3^(1/2)*arctanh(1/3*(I+2*tan(d*x+c)^(1/3))*3^(1/2))-1/72*(-30*tan( 
d*x+c)-4*I*tan(d*x+c)^(2/3)-4*tan(d*x+c)^(1/3)+28*I)/(-I*tan(d*x+c)^(1/3)+ 
tan(d*x+c)^(2/3)-1)^2-89/144*I*ln(-I*tan(d*x+c)^(1/3)+tan(d*x+c)^(2/3)-1)+ 
89/72*3^(1/2)*arctanh(1/3*(-I+2*tan(d*x+c)^(1/3))*3^(1/2))-1/8*I*ln(tan(d* 
x+c)^(1/3)-I)+1/36*I/(tan(d*x+c)^(1/3)+I)^2+89/72*I*ln(tan(d*x+c)^(1/3)+I) 
-5/12/(tan(d*x+c)^(1/3)+I))
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 521, normalized size of antiderivative = 1.46 \[ \int \frac {\tan ^{\frac {10}{3}}(c+d x)}{(a+i a \tan (c+d x))^2} \, dx =\text {Too large to display} \] Input:

integrate(tan(d*x+c)^(10/3)/(a+I*a*tan(d*x+c))^2,x, algorithm="fricas")
 

Output:

1/144*(9*(sqrt(3)*a^2*d*sqrt(1/(a^4*d^2))*e^(4*I*d*x + 4*I*c) + I*e^(4*I*d 
*x + 4*I*c))*log(1/2*sqrt(3)*a^2*d*sqrt(1/(a^4*d^2)) + ((-I*e^(2*I*d*x + 2 
*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))^(1/3) + 1/2*I) - 9*(sqrt(3)*a^2*d*sq 
rt(1/(a^4*d^2))*e^(4*I*d*x + 4*I*c) - I*e^(4*I*d*x + 4*I*c))*log(-1/2*sqrt 
(3)*a^2*d*sqrt(1/(a^4*d^2)) + ((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 
2*I*c) + 1))^(1/3) + 1/2*I) + 89*(3*sqrt(1/3)*a^2*d*sqrt(1/(a^4*d^2))*e^(4 
*I*d*x + 4*I*c) - I*e^(4*I*d*x + 4*I*c))*log(3/2*sqrt(1/3)*a^2*d*sqrt(1/(a 
^4*d^2)) + ((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))^(1/3) 
- 1/2*I) - 89*(3*sqrt(1/3)*a^2*d*sqrt(1/(a^4*d^2))*e^(4*I*d*x + 4*I*c) + I 
*e^(4*I*d*x + 4*I*c))*log(-3/2*sqrt(1/3)*a^2*d*sqrt(1/(a^4*d^2)) + ((-I*e^ 
(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))^(1/3) - 1/2*I) + 178*I*e 
^(4*I*d*x + 4*I*c)*log(((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) 
+ 1))^(1/3) + I) - 18*I*e^(4*I*d*x + 4*I*c)*log(((-I*e^(2*I*d*x + 2*I*c) + 
 I)/(e^(2*I*d*x + 2*I*c) + 1))^(1/3) - I) - 3*((-I*e^(2*I*d*x + 2*I*c) + I 
)/(e^(2*I*d*x + 2*I*c) + 1))^(1/3)*(173*e^(4*I*d*x + 4*I*c) + 26*e^(2*I*d* 
x + 2*I*c) - 3))*e^(-4*I*d*x - 4*I*c)/(a^2*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\tan ^{\frac {10}{3}}(c+d x)}{(a+i a \tan (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate(tan(d*x+c)**(10/3)/(a+I*a*tan(d*x+c))**2,x)
 

Output:

Timed out
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\tan ^{\frac {10}{3}}(c+d x)}{(a+i a \tan (c+d x))^2} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate(tan(d*x+c)^(10/3)/(a+I*a*tan(d*x+c))^2,x, algorithm="maxima")
 

Output:

Exception raised: RuntimeError >> ECL says: expt: undefined: 0 to a negati 
ve exponent.
 

Giac [A] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 204, normalized size of antiderivative = 0.57 \[ \int \frac {\tan ^{\frac {10}{3}}(c+d x)}{(a+i a \tan (c+d x))^2} \, dx=-\frac {89 \, \sqrt {3} \log \left (-\frac {\sqrt {3} - 2 \, \tan \left (d x + c\right )^{\frac {1}{3}} + i}{\sqrt {3} + 2 \, \tan \left (d x + c\right )^{\frac {1}{3}} - i}\right ) + 9 \, \sqrt {3} \log \left (-\frac {\sqrt {3} - 2 \, \tan \left (d x + c\right )^{\frac {1}{3}} - i}{\sqrt {3} + 2 \, \tan \left (d x + c\right )^{\frac {1}{3}} + i}\right ) + 432 \, \tan \left (d x + c\right )^{\frac {1}{3}} + \frac {12 \, {\left (-16 i \, \tan \left (d x + c\right )^{\frac {4}{3}} - 13 \, \tan \left (d x + c\right )^{\frac {1}{3}}\right )}}{{\left (\tan \left (d x + c\right ) - i\right )}^{2}} - 9 i \, \log \left (\tan \left (d x + c\right )^{\frac {2}{3}} + i \, \tan \left (d x + c\right )^{\frac {1}{3}} - 1\right ) + 89 i \, \log \left (\tan \left (d x + c\right )^{\frac {2}{3}} - i \, \tan \left (d x + c\right )^{\frac {1}{3}} - 1\right ) - 178 i \, \log \left (\tan \left (d x + c\right )^{\frac {1}{3}} + i\right ) + 18 i \, \log \left (\tan \left (d x + c\right )^{\frac {1}{3}} - i\right )}{144 \, a^{2} d} \] Input:

integrate(tan(d*x+c)^(10/3)/(a+I*a*tan(d*x+c))^2,x, algorithm="giac")
 

Output:

-1/144*(89*sqrt(3)*log(-(sqrt(3) - 2*tan(d*x + c)^(1/3) + I)/(sqrt(3) + 2* 
tan(d*x + c)^(1/3) - I)) + 9*sqrt(3)*log(-(sqrt(3) - 2*tan(d*x + c)^(1/3) 
- I)/(sqrt(3) + 2*tan(d*x + c)^(1/3) + I)) + 432*tan(d*x + c)^(1/3) + 12*( 
-16*I*tan(d*x + c)^(4/3) - 13*tan(d*x + c)^(1/3))/(tan(d*x + c) - I)^2 - 9 
*I*log(tan(d*x + c)^(2/3) + I*tan(d*x + c)^(1/3) - 1) + 89*I*log(tan(d*x + 
 c)^(2/3) - I*tan(d*x + c)^(1/3) - 1) - 178*I*log(tan(d*x + c)^(1/3) + I) 
+ 18*I*log(tan(d*x + c)^(1/3) - I))/(a^2*d)
 

Mupad [B] (verification not implemented)

Time = 2.53 (sec) , antiderivative size = 668, normalized size of antiderivative = 1.87 \[ \int \frac {\tan ^{\frac {10}{3}}(c+d x)}{(a+i a \tan (c+d x))^2} \, dx=\text {Too large to display} \] Input:

int(tan(c + d*x)^(10/3)/(a + a*tan(c + d*x)*1i)^2,x)
 

Output:

log(((a^6*d^3*90329344i)/3 - 17694720*a^10*d^5*tan(c + d*x)^(1/3)*(1i/(512 
*a^6*d^3))^(2/3))*(1i/(512*a^6*d^3))^(1/3) + (a^4*d^2*tan(c + d*x)^(1/3)*1 
1394848i)/3)*(1i/(512*a^6*d^3))^(1/3) + log(((a^6*d^3*90329344i)/3 - 17694 
720*a^10*d^5*tan(c + d*x)^(1/3)*(-704969i/(373248*a^6*d^3))^(2/3))*(-70496 
9i/(373248*a^6*d^3))^(1/3) + (a^4*d^2*tan(c + d*x)^(1/3)*11394848i)/3)*(-7 
04969i/(373248*a^6*d^3))^(1/3) + ((tan(c + d*x)^(1/3)*13i)/(12*a^2*d) - (4 
*tan(c + d*x)^(4/3))/(3*a^2*d))/(2*tan(c + d*x) + tan(c + d*x)^2*1i - 1i) 
- (3*tan(c + d*x)^(1/3))/(a^2*d) + (log(((3^(1/2)*1i - 1)*((a^6*d^3*903293 
44i)/3 - 4423680*a^10*d^5*tan(c + d*x)^(1/3)*(3^(1/2)*1i - 1)^2*(1i/(512*a 
^6*d^3))^(2/3))*(1i/(512*a^6*d^3))^(1/3))/2 + (a^4*d^2*tan(c + d*x)^(1/3)* 
11394848i)/3)*(3^(1/2)*1i - 1)*(1i/(512*a^6*d^3))^(1/3))/2 - (log(((3^(1/2 
)*1i + 1)*((a^6*d^3*90329344i)/3 - 4423680*a^10*d^5*tan(c + d*x)^(1/3)*(3^ 
(1/2)*1i + 1)^2*(1i/(512*a^6*d^3))^(2/3))*(1i/(512*a^6*d^3))^(1/3))/2 - (a 
^4*d^2*tan(c + d*x)^(1/3)*11394848i)/3)*(3^(1/2)*1i + 1)*(1i/(512*a^6*d^3) 
)^(1/3))/2 + (log(((3^(1/2)*1i - 1)*((a^6*d^3*90329344i)/3 - 4423680*a^10* 
d^5*tan(c + d*x)^(1/3)*(3^(1/2)*1i - 1)^2*(-704969i/(373248*a^6*d^3))^(2/3 
))*(-704969i/(373248*a^6*d^3))^(1/3))/2 + (a^4*d^2*tan(c + d*x)^(1/3)*1139 
4848i)/3)*(3^(1/2)*1i - 1)*(-704969i/(373248*a^6*d^3))^(1/3))/2 - (log(((3 
^(1/2)*1i + 1)*((a^6*d^3*90329344i)/3 - 4423680*a^10*d^5*tan(c + d*x)^(1/3 
)*(3^(1/2)*1i + 1)^2*(-704969i/(373248*a^6*d^3))^(2/3))*(-704969i/(3732...
 

Reduce [F]

\[ \int \frac {\tan ^{\frac {10}{3}}(c+d x)}{(a+i a \tan (c+d x))^2} \, dx=-\frac {\int \frac {\tan \left (d x +c \right )^{\frac {10}{3}}}{\tan \left (d x +c \right )^{2}-2 \tan \left (d x +c \right ) i -1}d x}{a^{2}} \] Input:

int(tan(d*x+c)^(10/3)/(a+I*a*tan(d*x+c))^2,x)
 

Output:

( - int((tan(c + d*x)**(1/3)*tan(c + d*x)**3)/(tan(c + d*x)**2 - 2*tan(c + 
 d*x)*i - 1),x))/a**2