\(\int \tan ^3(c+d x) (a+i a \tan (c+d x))^{4/3} \, dx\) [280]

Optimal result
Mathematica [A] (verified)
Rubi [A] (warning: unable to verify)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 251 \[ \int \tan ^3(c+d x) (a+i a \tan (c+d x))^{4/3} \, dx=-\frac {i a^{4/3} x}{2^{2/3}}+\frac {\sqrt [3]{2} \sqrt {3} a^{4/3} \arctan \left (\frac {\sqrt [3]{a}+2^{2/3} \sqrt [3]{a+i a \tan (c+d x)}}{\sqrt {3} \sqrt [3]{a}}\right )}{d}-\frac {a^{4/3} \log (\cos (c+d x))}{2^{2/3} d}-\frac {3 a^{4/3} \log \left (\sqrt [3]{2} \sqrt [3]{a}-\sqrt [3]{a+i a \tan (c+d x)}\right )}{2^{2/3} d}-\frac {3 a \sqrt [3]{a+i a \tan (c+d x)}}{d}-\frac {9 (a+i a \tan (c+d x))^{4/3}}{20 d}+\frac {3 \tan ^2(c+d x) (a+i a \tan (c+d x))^{4/3}}{10 d}-\frac {6 (a+i a \tan (c+d x))^{7/3}}{35 a d} \] Output:

-1/2*I*a^(4/3)*x*2^(1/3)+2^(1/3)*3^(1/2)*a^(4/3)*arctan(1/3*(a^(1/3)+2^(2/ 
3)*(a+I*a*tan(d*x+c))^(1/3))*3^(1/2)/a^(1/3))/d-1/2*a^(4/3)*ln(cos(d*x+c)) 
*2^(1/3)/d-3/2*a^(4/3)*ln(2^(1/3)*a^(1/3)-(a+I*a*tan(d*x+c))^(1/3))*2^(1/3 
)/d-3*a*(a+I*a*tan(d*x+c))^(1/3)/d-9/20*(a+I*a*tan(d*x+c))^(4/3)/d+3/10*ta 
n(d*x+c)^2*(a+I*a*tan(d*x+c))^(4/3)/d-6/35*(a+I*a*tan(d*x+c))^(7/3)/a/d
 

Mathematica [A] (verified)

Time = 1.02 (sec) , antiderivative size = 282, normalized size of antiderivative = 1.12 \[ \int \tan ^3(c+d x) (a+i a \tan (c+d x))^{4/3} \, dx=\frac {140 \sqrt [3]{2} \sqrt {3} a^{4/3} \arctan \left (\frac {1+\frac {2^{2/3} \sqrt [3]{a+i a \tan (c+d x)}}{\sqrt [3]{a}}}{\sqrt {3}}\right )-140 \sqrt [3]{2} a^{4/3} \log \left (\sqrt [3]{2} \sqrt [3]{a}-\sqrt [3]{a+i a \tan (c+d x)}\right )+70 \sqrt [3]{2} a^{4/3} \log \left (2^{2/3} a^{2/3}+\sqrt [3]{2} \sqrt [3]{a} \sqrt [3]{a+i a \tan (c+d x)}+(a+i a \tan (c+d x))^{2/3}\right )-507 a \sqrt [3]{a+i a \tan (c+d x)}-111 i a \tan (c+d x) \sqrt [3]{a+i a \tan (c+d x)}+66 a \tan ^2(c+d x) \sqrt [3]{a+i a \tan (c+d x)}+42 i a \tan ^3(c+d x) \sqrt [3]{a+i a \tan (c+d x)}}{140 d} \] Input:

Integrate[Tan[c + d*x]^3*(a + I*a*Tan[c + d*x])^(4/3),x]
 

Output:

(140*2^(1/3)*Sqrt[3]*a^(4/3)*ArcTan[(1 + (2^(2/3)*(a + I*a*Tan[c + d*x])^( 
1/3))/a^(1/3))/Sqrt[3]] - 140*2^(1/3)*a^(4/3)*Log[2^(1/3)*a^(1/3) - (a + I 
*a*Tan[c + d*x])^(1/3)] + 70*2^(1/3)*a^(4/3)*Log[2^(2/3)*a^(2/3) + 2^(1/3) 
*a^(1/3)*(a + I*a*Tan[c + d*x])^(1/3) + (a + I*a*Tan[c + d*x])^(2/3)] - 50 
7*a*(a + I*a*Tan[c + d*x])^(1/3) - (111*I)*a*Tan[c + d*x]*(a + I*a*Tan[c + 
 d*x])^(1/3) + 66*a*Tan[c + d*x]^2*(a + I*a*Tan[c + d*x])^(1/3) + (42*I)*a 
*Tan[c + d*x]^3*(a + I*a*Tan[c + d*x])^(1/3))/(140*d)
 

Rubi [A] (warning: unable to verify)

Time = 0.88 (sec) , antiderivative size = 231, normalized size of antiderivative = 0.92, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.577, Rules used = {3042, 4043, 27, 3042, 4075, 3042, 4010, 3042, 3959, 3042, 3962, 69, 16, 1082, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tan ^3(c+d x) (a+i a \tan (c+d x))^{4/3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \tan (c+d x)^3 (a+i a \tan (c+d x))^{4/3}dx\)

\(\Big \downarrow \) 4043

\(\displaystyle \frac {3 \tan ^2(c+d x) (a+i a \tan (c+d x))^{4/3}}{10 d}-\frac {3 \int \frac {2}{3} \tan (c+d x) (i \tan (c+d x) a+a)^{4/3} (2 i \tan (c+d x) a+3 a)dx}{10 a}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3 \tan ^2(c+d x) (a+i a \tan (c+d x))^{4/3}}{10 d}-\frac {\int \tan (c+d x) (i \tan (c+d x) a+a)^{4/3} (2 i \tan (c+d x) a+3 a)dx}{5 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \tan ^2(c+d x) (a+i a \tan (c+d x))^{4/3}}{10 d}-\frac {\int \tan (c+d x) (i \tan (c+d x) a+a)^{4/3} (2 i \tan (c+d x) a+3 a)dx}{5 a}\)

\(\Big \downarrow \) 4075

\(\displaystyle \frac {3 \tan ^2(c+d x) (a+i a \tan (c+d x))^{4/3}}{10 d}-\frac {\int (i \tan (c+d x) a+a)^{4/3} (3 a \tan (c+d x)-2 i a)dx+\frac {6 (a+i a \tan (c+d x))^{7/3}}{7 d}}{5 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \tan ^2(c+d x) (a+i a \tan (c+d x))^{4/3}}{10 d}-\frac {\int (i \tan (c+d x) a+a)^{4/3} (3 a \tan (c+d x)-2 i a)dx+\frac {6 (a+i a \tan (c+d x))^{7/3}}{7 d}}{5 a}\)

\(\Big \downarrow \) 4010

\(\displaystyle \frac {3 \tan ^2(c+d x) (a+i a \tan (c+d x))^{4/3}}{10 d}-\frac {-5 i a \int (i \tan (c+d x) a+a)^{4/3}dx+\frac {6 (a+i a \tan (c+d x))^{7/3}}{7 d}+\frac {9 a (a+i a \tan (c+d x))^{4/3}}{4 d}}{5 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \tan ^2(c+d x) (a+i a \tan (c+d x))^{4/3}}{10 d}-\frac {-5 i a \int (i \tan (c+d x) a+a)^{4/3}dx+\frac {6 (a+i a \tan (c+d x))^{7/3}}{7 d}+\frac {9 a (a+i a \tan (c+d x))^{4/3}}{4 d}}{5 a}\)

\(\Big \downarrow \) 3959

\(\displaystyle \frac {3 \tan ^2(c+d x) (a+i a \tan (c+d x))^{4/3}}{10 d}-\frac {-5 i a \left (2 a \int \sqrt [3]{i \tan (c+d x) a+a}dx+\frac {3 i a \sqrt [3]{a+i a \tan (c+d x)}}{d}\right )+\frac {6 (a+i a \tan (c+d x))^{7/3}}{7 d}+\frac {9 a (a+i a \tan (c+d x))^{4/3}}{4 d}}{5 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \tan ^2(c+d x) (a+i a \tan (c+d x))^{4/3}}{10 d}-\frac {-5 i a \left (2 a \int \sqrt [3]{i \tan (c+d x) a+a}dx+\frac {3 i a \sqrt [3]{a+i a \tan (c+d x)}}{d}\right )+\frac {6 (a+i a \tan (c+d x))^{7/3}}{7 d}+\frac {9 a (a+i a \tan (c+d x))^{4/3}}{4 d}}{5 a}\)

\(\Big \downarrow \) 3962

\(\displaystyle \frac {3 \tan ^2(c+d x) (a+i a \tan (c+d x))^{4/3}}{10 d}-\frac {-5 i a \left (\frac {3 i a \sqrt [3]{a+i a \tan (c+d x)}}{d}-\frac {2 i a^2 \int \frac {1}{(a-i a \tan (c+d x)) (i \tan (c+d x) a+a)^{2/3}}d(i a \tan (c+d x))}{d}\right )+\frac {6 (a+i a \tan (c+d x))^{7/3}}{7 d}+\frac {9 a (a+i a \tan (c+d x))^{4/3}}{4 d}}{5 a}\)

\(\Big \downarrow \) 69

\(\displaystyle \frac {3 \tan ^2(c+d x) (a+i a \tan (c+d x))^{4/3}}{10 d}-\frac {-5 i a \left (\frac {3 i a \sqrt [3]{a+i a \tan (c+d x)}}{d}-\frac {2 i a^2 \left (\frac {3 \int \frac {1}{\sqrt [3]{2} \sqrt [3]{a}-i a \tan (c+d x)}d\sqrt [3]{i \tan (c+d x) a+a}}{2\ 2^{2/3} a^{2/3}}+\frac {3 \int \frac {1}{-a^2 \tan ^2(c+d x)+i \sqrt [3]{2} a^{4/3} \tan (c+d x)+2^{2/3} a^{2/3}}d\sqrt [3]{i \tan (c+d x) a+a}}{2 \sqrt [3]{2} \sqrt [3]{a}}+\frac {\log (a-i a \tan (c+d x))}{2\ 2^{2/3} a^{2/3}}\right )}{d}\right )+\frac {6 (a+i a \tan (c+d x))^{7/3}}{7 d}+\frac {9 a (a+i a \tan (c+d x))^{4/3}}{4 d}}{5 a}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {3 \tan ^2(c+d x) (a+i a \tan (c+d x))^{4/3}}{10 d}-\frac {-5 i a \left (\frac {3 i a \sqrt [3]{a+i a \tan (c+d x)}}{d}-\frac {2 i a^2 \left (\frac {3 \int \frac {1}{-a^2 \tan ^2(c+d x)+i \sqrt [3]{2} a^{4/3} \tan (c+d x)+2^{2/3} a^{2/3}}d\sqrt [3]{i \tan (c+d x) a+a}}{2 \sqrt [3]{2} \sqrt [3]{a}}-\frac {3 \log \left (\sqrt [3]{2} \sqrt [3]{a}-i a \tan (c+d x)\right )}{2\ 2^{2/3} a^{2/3}}+\frac {\log (a-i a \tan (c+d x))}{2\ 2^{2/3} a^{2/3}}\right )}{d}\right )+\frac {6 (a+i a \tan (c+d x))^{7/3}}{7 d}+\frac {9 a (a+i a \tan (c+d x))^{4/3}}{4 d}}{5 a}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {3 \tan ^2(c+d x) (a+i a \tan (c+d x))^{4/3}}{10 d}-\frac {-5 i a \left (\frac {3 i a \sqrt [3]{a+i a \tan (c+d x)}}{d}-\frac {2 i a^2 \left (-\frac {3 \int \frac {1}{a^2 \tan ^2(c+d x)-3}d\left (i 2^{2/3} a^{2/3} \tan (c+d x)+1\right )}{2^{2/3} a^{2/3}}-\frac {3 \log \left (\sqrt [3]{2} \sqrt [3]{a}-i a \tan (c+d x)\right )}{2\ 2^{2/3} a^{2/3}}+\frac {\log (a-i a \tan (c+d x))}{2\ 2^{2/3} a^{2/3}}\right )}{d}\right )+\frac {6 (a+i a \tan (c+d x))^{7/3}}{7 d}+\frac {9 a (a+i a \tan (c+d x))^{4/3}}{4 d}}{5 a}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {3 \tan ^2(c+d x) (a+i a \tan (c+d x))^{4/3}}{10 d}-\frac {-5 i a \left (\frac {3 i a \sqrt [3]{a+i a \tan (c+d x)}}{d}-\frac {2 i a^2 \left (\frac {i \sqrt {3} \text {arctanh}\left (\frac {a \tan (c+d x)}{\sqrt {3}}\right )}{2^{2/3} a^{2/3}}-\frac {3 \log \left (\sqrt [3]{2} \sqrt [3]{a}-i a \tan (c+d x)\right )}{2\ 2^{2/3} a^{2/3}}+\frac {\log (a-i a \tan (c+d x))}{2\ 2^{2/3} a^{2/3}}\right )}{d}\right )+\frac {6 (a+i a \tan (c+d x))^{7/3}}{7 d}+\frac {9 a (a+i a \tan (c+d x))^{4/3}}{4 d}}{5 a}\)

Input:

Int[Tan[c + d*x]^3*(a + I*a*Tan[c + d*x])^(4/3),x]
 

Output:

(3*Tan[c + d*x]^2*(a + I*a*Tan[c + d*x])^(4/3))/(10*d) - ((9*a*(a + I*a*Ta 
n[c + d*x])^(4/3))/(4*d) + (6*(a + I*a*Tan[c + d*x])^(7/3))/(7*d) - (5*I)* 
a*(((-2*I)*a^2*((I*Sqrt[3]*ArcTanh[(a*Tan[c + d*x])/Sqrt[3]])/(2^(2/3)*a^( 
2/3)) - (3*Log[2^(1/3)*a^(1/3) - I*a*Tan[c + d*x]])/(2*2^(2/3)*a^(2/3)) + 
Log[a - I*a*Tan[c + d*x]]/(2*2^(2/3)*a^(2/3))))/d + ((3*I)*a*(a + I*a*Tan[ 
c + d*x])^(1/3))/d))/(5*a)
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 69
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[ 
{q = Rt[(b*c - a*d)/b, 3]}, Simp[-Log[RemoveContent[a + b*x, x]]/(2*b*q^2), 
 x] + (-Simp[3/(2*b*q)   Subst[Int[1/(q^2 + q*x + x^2), x], x, (c + d*x)^(1 
/3)], x] - Simp[3/(2*b*q^2)   Subst[Int[1/(q - x), x], x, (c + d*x)^(1/3)], 
 x])] /; FreeQ[{a, b, c, d}, x] && PosQ[(b*c - a*d)/b]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3959
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((a + 
b*Tan[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[2*a   Int[(a + b*Tan[c + d* 
x])^(n - 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0] && GtQ[n 
, 1]
 

rule 3962
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[-b/d   S 
ubst[Int[(a + x)^(n - 1)/(a - x), x], x, b*Tan[c + d*x]], x] /; FreeQ[{a, b 
, c, d, n}, x] && EqQ[a^2 + b^2, 0]
 

rule 4010
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[d*((a + b*Tan[e + f*x])^m/(f*m)), x] + Simp 
[(b*c + a*d)/b   Int[(a + b*Tan[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e 
, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] &&  !LtQ[m, 0]
 

rule 4043
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[d*(a + b*Tan[e + f*x])^m*((c + d*Tan[e 
 + f*x])^(n - 1)/(f*(m + n - 1))), x] - Simp[1/(a*(m + n - 1))   Int[(a + b 
*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 2)*Simp[d*(b*c*m + a*d*(-1 + n)) 
 - a*c^2*(m + n - 1) + d*(b*d*m - a*c*(m + 2*n - 2))*Tan[e + f*x], x], x], 
x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2 
, 0] && NeQ[c^2 + d^2, 0] && GtQ[n, 1] && NeQ[m + n - 1, 0] && (IntegerQ[n] 
 || IntegersQ[2*m, 2*n])
 

rule 4075
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[B 
*d*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f* 
x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] &&  !LeQ[m, -1]
 
Maple [A] (verified)

Time = 0.96 (sec) , antiderivative size = 217, normalized size of antiderivative = 0.86

method result size
derivativedivides \(-\frac {3 \left (a +i a \tan \left (d x +c \right )\right )^{\frac {10}{3}}}{10 d \,a^{2}}+\frac {3 \left (a +i a \tan \left (d x +c \right )\right )^{\frac {7}{3}}}{7 a d}-\frac {3 \left (a +i a \tan \left (d x +c \right )\right )^{\frac {4}{3}}}{4 d}-\frac {3 a \left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}}{d}-\frac {a^{\frac {4}{3}} 2^{\frac {1}{3}} \ln \left (\left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}-2^{\frac {1}{3}} a^{\frac {1}{3}}\right )}{d}+\frac {a^{\frac {4}{3}} 2^{\frac {1}{3}} \ln \left (\left (a +i a \tan \left (d x +c \right )\right )^{\frac {2}{3}}+2^{\frac {1}{3}} a^{\frac {1}{3}} \left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}+2^{\frac {2}{3}} a^{\frac {2}{3}}\right )}{2 d}+\frac {a^{\frac {4}{3}} 2^{\frac {1}{3}} \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2^{\frac {2}{3}} \left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}}{a^{\frac {1}{3}}}+1\right )}{3}\right )}{d}\) \(217\)
default \(-\frac {3 \left (a +i a \tan \left (d x +c \right )\right )^{\frac {10}{3}}}{10 d \,a^{2}}+\frac {3 \left (a +i a \tan \left (d x +c \right )\right )^{\frac {7}{3}}}{7 a d}-\frac {3 \left (a +i a \tan \left (d x +c \right )\right )^{\frac {4}{3}}}{4 d}-\frac {3 a \left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}}{d}-\frac {a^{\frac {4}{3}} 2^{\frac {1}{3}} \ln \left (\left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}-2^{\frac {1}{3}} a^{\frac {1}{3}}\right )}{d}+\frac {a^{\frac {4}{3}} 2^{\frac {1}{3}} \ln \left (\left (a +i a \tan \left (d x +c \right )\right )^{\frac {2}{3}}+2^{\frac {1}{3}} a^{\frac {1}{3}} \left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}+2^{\frac {2}{3}} a^{\frac {2}{3}}\right )}{2 d}+\frac {a^{\frac {4}{3}} 2^{\frac {1}{3}} \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2^{\frac {2}{3}} \left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}}{a^{\frac {1}{3}}}+1\right )}{3}\right )}{d}\) \(217\)

Input:

int(tan(d*x+c)^3*(a+I*a*tan(d*x+c))^(4/3),x,method=_RETURNVERBOSE)
 

Output:

-3/10/d/a^2*(a+I*a*tan(d*x+c))^(10/3)+3/7*(a+I*a*tan(d*x+c))^(7/3)/a/d-3/4 
*(a+I*a*tan(d*x+c))^(4/3)/d-3*a*(a+I*a*tan(d*x+c))^(1/3)/d-1/d*a^(4/3)*2^( 
1/3)*ln((a+I*a*tan(d*x+c))^(1/3)-2^(1/3)*a^(1/3))+1/2/d*a^(4/3)*2^(1/3)*ln 
((a+I*a*tan(d*x+c))^(2/3)+2^(1/3)*a^(1/3)*(a+I*a*tan(d*x+c))^(1/3)+2^(2/3) 
*a^(2/3))+1/d*a^(4/3)*2^(1/3)*3^(1/2)*arctan(1/3*3^(1/2)*(2^(2/3)/a^(1/3)* 
(a+I*a*tan(d*x+c))^(1/3)+1))
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 501 vs. \(2 (190) = 380\).

Time = 0.09 (sec) , antiderivative size = 501, normalized size of antiderivative = 2.00 \[ \int \tan ^3(c+d x) (a+i a \tan (c+d x))^{4/3} \, dx =\text {Too large to display} \] Input:

integrate(tan(d*x+c)^3*(a+I*a*tan(d*x+c))^(4/3),x, algorithm="fricas")
 

Output:

-1/70*(3*2^(1/3)*(121*a*e^(6*I*d*x + 6*I*c) + 240*a*e^(4*I*d*x + 4*I*c) + 
245*a*e^(2*I*d*x + 2*I*c) + 70*a)*(a/(e^(2*I*d*x + 2*I*c) + 1))^(1/3)*e^(2 
/3*I*d*x + 2/3*I*c) + 35*2^(1/3)*((-I*sqrt(3)*d + d)*e^(6*I*d*x + 6*I*c) + 
 3*(-I*sqrt(3)*d + d)*e^(4*I*d*x + 4*I*c) + 3*(-I*sqrt(3)*d + d)*e^(2*I*d* 
x + 2*I*c) - I*sqrt(3)*d + d)*(-a^4/d^3)^(1/3)*log(1/2*(2*2^(1/3)*a*(a/(e^ 
(2*I*d*x + 2*I*c) + 1))^(1/3)*e^(2/3*I*d*x + 2/3*I*c) + 2^(1/3)*(I*sqrt(3) 
*d - d)*(-a^4/d^3)^(1/3))/a) + 35*2^(1/3)*((I*sqrt(3)*d + d)*e^(6*I*d*x + 
6*I*c) + 3*(I*sqrt(3)*d + d)*e^(4*I*d*x + 4*I*c) + 3*(I*sqrt(3)*d + d)*e^( 
2*I*d*x + 2*I*c) + I*sqrt(3)*d + d)*(-a^4/d^3)^(1/3)*log(1/2*(2*2^(1/3)*a* 
(a/(e^(2*I*d*x + 2*I*c) + 1))^(1/3)*e^(2/3*I*d*x + 2/3*I*c) + 2^(1/3)*(-I* 
sqrt(3)*d - d)*(-a^4/d^3)^(1/3))/a) - 70*2^(1/3)*(d*e^(6*I*d*x + 6*I*c) + 
3*d*e^(4*I*d*x + 4*I*c) + 3*d*e^(2*I*d*x + 2*I*c) + d)*(-a^4/d^3)^(1/3)*lo 
g((2^(1/3)*a*(a/(e^(2*I*d*x + 2*I*c) + 1))^(1/3)*e^(2/3*I*d*x + 2/3*I*c) + 
 2^(1/3)*(-a^4/d^3)^(1/3)*d)/a))/(d*e^(6*I*d*x + 6*I*c) + 3*d*e^(4*I*d*x + 
 4*I*c) + 3*d*e^(2*I*d*x + 2*I*c) + d)
 

Sympy [F]

\[ \int \tan ^3(c+d x) (a+i a \tan (c+d x))^{4/3} \, dx=\int \left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {4}{3}} \tan ^{3}{\left (c + d x \right )}\, dx \] Input:

integrate(tan(d*x+c)**3*(a+I*a*tan(d*x+c))**(4/3),x)
 

Output:

Integral((I*a*(tan(c + d*x) - I))**(4/3)*tan(c + d*x)**3, x)
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 208, normalized size of antiderivative = 0.83 \[ \int \tan ^3(c+d x) (a+i a \tan (c+d x))^{4/3} \, dx=\frac {140 \, \sqrt {3} 2^{\frac {1}{3}} a^{\frac {16}{3}} \arctan \left (\frac {\sqrt {3} 2^{\frac {2}{3}} {\left (2^{\frac {1}{3}} a^{\frac {1}{3}} + 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {1}{3}}\right )}}{6 \, a^{\frac {1}{3}}}\right ) + 70 \cdot 2^{\frac {1}{3}} a^{\frac {16}{3}} \log \left (2^{\frac {2}{3}} a^{\frac {2}{3}} + 2^{\frac {1}{3}} {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {1}{3}} a^{\frac {1}{3}} + {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {2}{3}}\right ) - 140 \cdot 2^{\frac {1}{3}} a^{\frac {16}{3}} \log \left (-2^{\frac {1}{3}} a^{\frac {1}{3}} + {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {1}{3}}\right ) - 42 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {10}{3}} a^{2} + 60 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {7}{3}} a^{3} - 105 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {4}{3}} a^{4} - 420 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {1}{3}} a^{5}}{140 \, a^{4} d} \] Input:

integrate(tan(d*x+c)^3*(a+I*a*tan(d*x+c))^(4/3),x, algorithm="maxima")
 

Output:

1/140*(140*sqrt(3)*2^(1/3)*a^(16/3)*arctan(1/6*sqrt(3)*2^(2/3)*(2^(1/3)*a^ 
(1/3) + 2*(I*a*tan(d*x + c) + a)^(1/3))/a^(1/3)) + 70*2^(1/3)*a^(16/3)*log 
(2^(2/3)*a^(2/3) + 2^(1/3)*(I*a*tan(d*x + c) + a)^(1/3)*a^(1/3) + (I*a*tan 
(d*x + c) + a)^(2/3)) - 140*2^(1/3)*a^(16/3)*log(-2^(1/3)*a^(1/3) + (I*a*t 
an(d*x + c) + a)^(1/3)) - 42*(I*a*tan(d*x + c) + a)^(10/3)*a^2 + 60*(I*a*t 
an(d*x + c) + a)^(7/3)*a^3 - 105*(I*a*tan(d*x + c) + a)^(4/3)*a^4 - 420*(I 
*a*tan(d*x + c) + a)^(1/3)*a^5)/(a^4*d)
 

Giac [A] (verification not implemented)

Time = 0.42 (sec) , antiderivative size = 212, normalized size of antiderivative = 0.84 \[ \int \tan ^3(c+d x) (a+i a \tan (c+d x))^{4/3} \, dx=-\frac {i \, {\left (140 i \, \sqrt {3} 2^{\frac {1}{3}} a^{\frac {1}{3}} \arctan \left (\frac {\sqrt {3} 2^{\frac {2}{3}} {\left (2^{\frac {1}{3}} a^{\frac {1}{3}} + 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {1}{3}}\right )}}{6 \, a^{\frac {1}{3}}}\right ) + 70 i \cdot 2^{\frac {1}{3}} a^{\frac {1}{3}} \log \left (2^{\frac {2}{3}} a^{\frac {2}{3}} + 2^{\frac {1}{3}} {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {1}{3}} a^{\frac {1}{3}} + {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {2}{3}}\right ) - 140 i \cdot 2^{\frac {1}{3}} a^{\frac {1}{3}} \log \left (-2^{\frac {1}{3}} a^{\frac {1}{3}} + {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {1}{3}}\right ) + \frac {3 \, {\left (-14 i \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {10}{3}} a^{27} + 20 i \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {7}{3}} a^{28} - 35 i \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {4}{3}} a^{29} - 140 i \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {1}{3}} a^{30}\right )}}{a^{30}}\right )} a}{140 \, d} \] Input:

integrate(tan(d*x+c)^3*(a+I*a*tan(d*x+c))^(4/3),x, algorithm="giac")
                                                                                    
                                                                                    
 

Output:

-1/140*I*(140*I*sqrt(3)*2^(1/3)*a^(1/3)*arctan(1/6*sqrt(3)*2^(2/3)*(2^(1/3 
)*a^(1/3) + 2*(I*a*tan(d*x + c) + a)^(1/3))/a^(1/3)) + 70*I*2^(1/3)*a^(1/3 
)*log(2^(2/3)*a^(2/3) + 2^(1/3)*(I*a*tan(d*x + c) + a)^(1/3)*a^(1/3) + (I* 
a*tan(d*x + c) + a)^(2/3)) - 140*I*2^(1/3)*a^(1/3)*log(-2^(1/3)*a^(1/3) + 
(I*a*tan(d*x + c) + a)^(1/3)) + 3*(-14*I*(I*a*tan(d*x + c) + a)^(10/3)*a^2 
7 + 20*I*(I*a*tan(d*x + c) + a)^(7/3)*a^28 - 35*I*(I*a*tan(d*x + c) + a)^( 
4/3)*a^29 - 140*I*(I*a*tan(d*x + c) + a)^(1/3)*a^30)/a^30)*a/d
 

Mupad [B] (verification not implemented)

Time = 1.74 (sec) , antiderivative size = 243, normalized size of antiderivative = 0.97 \[ \int \tan ^3(c+d x) (a+i a \tan (c+d x))^{4/3} \, dx=-\frac {3\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{4/3}}{4\,d}+\frac {3\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{7/3}}{7\,a\,d}-\frac {3\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{10/3}}{10\,a^2\,d}-\frac {3\,a\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{1/3}}{d}-\frac {2^{1/3}\,a^{4/3}\,\ln \left ({\left (a\,\left (1+\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )\right )}^{1/3}-2^{1/3}\,a^{1/3}\right )}{d}-\frac {2^{1/3}\,a^{4/3}\,\ln \left (\frac {18\,a^2\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{1/3}}{d}-\frac {9\,2^{1/3}\,a^{7/3}\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{d}\right )\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{d}+\frac {2^{1/3}\,a^{4/3}\,\ln \left (\frac {18\,a^2\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{1/3}}{d}+\frac {9\,2^{1/3}\,a^{7/3}\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{d}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{d} \] Input:

int(tan(c + d*x)^3*(a + a*tan(c + d*x)*1i)^(4/3),x)
 

Output:

(3*(a + a*tan(c + d*x)*1i)^(7/3))/(7*a*d) - (3*(a + a*tan(c + d*x)*1i)^(4/ 
3))/(4*d) - (3*(a + a*tan(c + d*x)*1i)^(10/3))/(10*a^2*d) - (3*a*(a + a*ta 
n(c + d*x)*1i)^(1/3))/d - (2^(1/3)*a^(4/3)*log((a*(tan(c + d*x)*1i + 1))^( 
1/3) - 2^(1/3)*a^(1/3)))/d - (2^(1/3)*a^(4/3)*log((18*a^2*(a + a*tan(c + d 
*x)*1i)^(1/3))/d - (9*2^(1/3)*a^(7/3)*(3^(1/2)*1i - 1))/d)*((3^(1/2)*1i)/2 
 - 1/2))/d + (2^(1/3)*a^(4/3)*log((18*a^2*(a + a*tan(c + d*x)*1i)^(1/3))/d 
 + (9*2^(1/3)*a^(7/3)*(3^(1/2)*1i + 1))/d)*((3^(1/2)*1i)/2 + 1/2))/d
 

Reduce [F]

\[ \int \tan ^3(c+d x) (a+i a \tan (c+d x))^{4/3} \, dx=a^{\frac {4}{3}} \left (\left (\int \left (\tan \left (d x +c \right ) i +1\right )^{\frac {1}{3}} \tan \left (d x +c \right )^{4}d x \right ) i +\int \left (\tan \left (d x +c \right ) i +1\right )^{\frac {1}{3}} \tan \left (d x +c \right )^{3}d x \right ) \] Input:

int(tan(d*x+c)^3*(a+I*a*tan(d*x+c))^(4/3),x)
 

Output:

a**(1/3)*a*(int((tan(c + d*x)*i + 1)**(1/3)*tan(c + d*x)**4,x)*i + int((ta 
n(c + d*x)*i + 1)**(1/3)*tan(c + d*x)**3,x))