\(\int (a+i a \tan (c+d x))^{4/3} \, dx\) [283]

Optimal result
Mathematica [A] (verified)
Rubi [A] (warning: unable to verify)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 17, antiderivative size = 175 \[ \int (a+i a \tan (c+d x))^{4/3} \, dx=-\frac {a^{4/3} x}{2^{2/3}}-\frac {i \sqrt [3]{2} \sqrt {3} a^{4/3} \arctan \left (\frac {\sqrt [3]{a}+2^{2/3} \sqrt [3]{a+i a \tan (c+d x)}}{\sqrt {3} \sqrt [3]{a}}\right )}{d}+\frac {i a^{4/3} \log (\cos (c+d x))}{2^{2/3} d}+\frac {3 i a^{4/3} \log \left (\sqrt [3]{2} \sqrt [3]{a}-\sqrt [3]{a+i a \tan (c+d x)}\right )}{2^{2/3} d}+\frac {3 i a \sqrt [3]{a+i a \tan (c+d x)}}{d} \] Output:

-1/2*a^(4/3)*x*2^(1/3)-I*2^(1/3)*3^(1/2)*a^(4/3)*arctan(1/3*(a^(1/3)+2^(2/ 
3)*(a+I*a*tan(d*x+c))^(1/3))*3^(1/2)/a^(1/3))/d+1/2*I*a^(4/3)*ln(cos(d*x+c 
))*2^(1/3)/d+3/2*I*a^(4/3)*ln(2^(1/3)*a^(1/3)-(a+I*a*tan(d*x+c))^(1/3))*2^ 
(1/3)/d+3*I*a*(a+I*a*tan(d*x+c))^(1/3)/d
 

Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 197, normalized size of antiderivative = 1.13 \[ \int (a+i a \tan (c+d x))^{4/3} \, dx=-\frac {i a \left (2 \sqrt [3]{2} \sqrt {3} \sqrt [3]{a} \arctan \left (\frac {1+\frac {2^{2/3} \sqrt [3]{a+i a \tan (c+d x)}}{\sqrt [3]{a}}}{\sqrt {3}}\right )-2 \sqrt [3]{2} \sqrt [3]{a} \log \left (\sqrt [3]{2} \sqrt [3]{a}-\sqrt [3]{a+i a \tan (c+d x)}\right )+\sqrt [3]{2} \sqrt [3]{a} \log \left (2^{2/3} a^{2/3}+\sqrt [3]{2} \sqrt [3]{a} \sqrt [3]{a+i a \tan (c+d x)}+(a+i a \tan (c+d x))^{2/3}\right )-6 \sqrt [3]{a+i a \tan (c+d x)}\right )}{2 d} \] Input:

Integrate[(a + I*a*Tan[c + d*x])^(4/3),x]
 

Output:

((-1/2*I)*a*(2*2^(1/3)*Sqrt[3]*a^(1/3)*ArcTan[(1 + (2^(2/3)*(a + I*a*Tan[c 
 + d*x])^(1/3))/a^(1/3))/Sqrt[3]] - 2*2^(1/3)*a^(1/3)*Log[2^(1/3)*a^(1/3) 
- (a + I*a*Tan[c + d*x])^(1/3)] + 2^(1/3)*a^(1/3)*Log[2^(2/3)*a^(2/3) + 2^ 
(1/3)*a^(1/3)*(a + I*a*Tan[c + d*x])^(1/3) + (a + I*a*Tan[c + d*x])^(2/3)] 
 - 6*(a + I*a*Tan[c + d*x])^(1/3)))/d
 

Rubi [A] (warning: unable to verify)

Time = 0.36 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.78, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.471, Rules used = {3042, 3959, 3042, 3962, 69, 16, 1082, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a+i a \tan (c+d x))^{4/3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (a+i a \tan (c+d x))^{4/3}dx\)

\(\Big \downarrow \) 3959

\(\displaystyle 2 a \int \sqrt [3]{i \tan (c+d x) a+a}dx+\frac {3 i a \sqrt [3]{a+i a \tan (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 a \int \sqrt [3]{i \tan (c+d x) a+a}dx+\frac {3 i a \sqrt [3]{a+i a \tan (c+d x)}}{d}\)

\(\Big \downarrow \) 3962

\(\displaystyle \frac {3 i a \sqrt [3]{a+i a \tan (c+d x)}}{d}-\frac {2 i a^2 \int \frac {1}{(a-i a \tan (c+d x)) (i \tan (c+d x) a+a)^{2/3}}d(i a \tan (c+d x))}{d}\)

\(\Big \downarrow \) 69

\(\displaystyle \frac {3 i a \sqrt [3]{a+i a \tan (c+d x)}}{d}-\frac {2 i a^2 \left (\frac {3 \int \frac {1}{\sqrt [3]{2} \sqrt [3]{a}-i a \tan (c+d x)}d\sqrt [3]{i \tan (c+d x) a+a}}{2\ 2^{2/3} a^{2/3}}+\frac {3 \int \frac {1}{-a^2 \tan ^2(c+d x)+i \sqrt [3]{2} a^{4/3} \tan (c+d x)+2^{2/3} a^{2/3}}d\sqrt [3]{i \tan (c+d x) a+a}}{2 \sqrt [3]{2} \sqrt [3]{a}}+\frac {\log (a-i a \tan (c+d x))}{2\ 2^{2/3} a^{2/3}}\right )}{d}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {3 i a \sqrt [3]{a+i a \tan (c+d x)}}{d}-\frac {2 i a^2 \left (\frac {3 \int \frac {1}{-a^2 \tan ^2(c+d x)+i \sqrt [3]{2} a^{4/3} \tan (c+d x)+2^{2/3} a^{2/3}}d\sqrt [3]{i \tan (c+d x) a+a}}{2 \sqrt [3]{2} \sqrt [3]{a}}-\frac {3 \log \left (\sqrt [3]{2} \sqrt [3]{a}-i a \tan (c+d x)\right )}{2\ 2^{2/3} a^{2/3}}+\frac {\log (a-i a \tan (c+d x))}{2\ 2^{2/3} a^{2/3}}\right )}{d}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {3 i a \sqrt [3]{a+i a \tan (c+d x)}}{d}-\frac {2 i a^2 \left (-\frac {3 \int \frac {1}{a^2 \tan ^2(c+d x)-3}d\left (i 2^{2/3} a^{2/3} \tan (c+d x)+1\right )}{2^{2/3} a^{2/3}}-\frac {3 \log \left (\sqrt [3]{2} \sqrt [3]{a}-i a \tan (c+d x)\right )}{2\ 2^{2/3} a^{2/3}}+\frac {\log (a-i a \tan (c+d x))}{2\ 2^{2/3} a^{2/3}}\right )}{d}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {3 i a \sqrt [3]{a+i a \tan (c+d x)}}{d}-\frac {2 i a^2 \left (\frac {i \sqrt {3} \text {arctanh}\left (\frac {a \tan (c+d x)}{\sqrt {3}}\right )}{2^{2/3} a^{2/3}}-\frac {3 \log \left (\sqrt [3]{2} \sqrt [3]{a}-i a \tan (c+d x)\right )}{2\ 2^{2/3} a^{2/3}}+\frac {\log (a-i a \tan (c+d x))}{2\ 2^{2/3} a^{2/3}}\right )}{d}\)

Input:

Int[(a + I*a*Tan[c + d*x])^(4/3),x]
 

Output:

((-2*I)*a^2*((I*Sqrt[3]*ArcTanh[(a*Tan[c + d*x])/Sqrt[3]])/(2^(2/3)*a^(2/3 
)) - (3*Log[2^(1/3)*a^(1/3) - I*a*Tan[c + d*x]])/(2*2^(2/3)*a^(2/3)) + Log 
[a - I*a*Tan[c + d*x]]/(2*2^(2/3)*a^(2/3))))/d + ((3*I)*a*(a + I*a*Tan[c + 
 d*x])^(1/3))/d
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 69
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[ 
{q = Rt[(b*c - a*d)/b, 3]}, Simp[-Log[RemoveContent[a + b*x, x]]/(2*b*q^2), 
 x] + (-Simp[3/(2*b*q)   Subst[Int[1/(q^2 + q*x + x^2), x], x, (c + d*x)^(1 
/3)], x] - Simp[3/(2*b*q^2)   Subst[Int[1/(q - x), x], x, (c + d*x)^(1/3)], 
 x])] /; FreeQ[{a, b, c, d}, x] && PosQ[(b*c - a*d)/b]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3959
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((a + 
b*Tan[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[2*a   Int[(a + b*Tan[c + d* 
x])^(n - 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0] && GtQ[n 
, 1]
 

rule 3962
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[-b/d   S 
ubst[Int[(a + x)^(n - 1)/(a - x), x], x, b*Tan[c + d*x]], x] /; FreeQ[{a, b 
, c, d, n}, x] && EqQ[a^2 + b^2, 0]
 
Maple [A] (verified)

Time = 0.87 (sec) , antiderivative size = 151, normalized size of antiderivative = 0.86

method result size
derivativedivides \(\frac {3 i a \left (\left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}+2 a \left (\frac {2^{\frac {1}{3}} \ln \left (\left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}-2^{\frac {1}{3}} a^{\frac {1}{3}}\right )}{6 a^{\frac {2}{3}}}-\frac {2^{\frac {1}{3}} \ln \left (\left (a +i a \tan \left (d x +c \right )\right )^{\frac {2}{3}}+2^{\frac {1}{3}} a^{\frac {1}{3}} \left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}+2^{\frac {2}{3}} a^{\frac {2}{3}}\right )}{12 a^{\frac {2}{3}}}-\frac {2^{\frac {1}{3}} \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2^{\frac {2}{3}} \left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}}{a^{\frac {1}{3}}}+1\right )}{3}\right )}{6 a^{\frac {2}{3}}}\right )\right )}{d}\) \(151\)
default \(\frac {3 i a \left (\left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}+2 a \left (\frac {2^{\frac {1}{3}} \ln \left (\left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}-2^{\frac {1}{3}} a^{\frac {1}{3}}\right )}{6 a^{\frac {2}{3}}}-\frac {2^{\frac {1}{3}} \ln \left (\left (a +i a \tan \left (d x +c \right )\right )^{\frac {2}{3}}+2^{\frac {1}{3}} a^{\frac {1}{3}} \left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}+2^{\frac {2}{3}} a^{\frac {2}{3}}\right )}{12 a^{\frac {2}{3}}}-\frac {2^{\frac {1}{3}} \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2^{\frac {2}{3}} \left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}}{a^{\frac {1}{3}}}+1\right )}{3}\right )}{6 a^{\frac {2}{3}}}\right )\right )}{d}\) \(151\)

Input:

int((a+I*a*tan(d*x+c))^(4/3),x,method=_RETURNVERBOSE)
 

Output:

3*I/d*a*((a+I*a*tan(d*x+c))^(1/3)+2*a*(1/6*2^(1/3)/a^(2/3)*ln((a+I*a*tan(d 
*x+c))^(1/3)-2^(1/3)*a^(1/3))-1/12*2^(1/3)/a^(2/3)*ln((a+I*a*tan(d*x+c))^( 
2/3)+2^(1/3)*a^(1/3)*(a+I*a*tan(d*x+c))^(1/3)+2^(2/3)*a^(2/3))-1/6*2^(1/3) 
/a^(2/3)*3^(1/2)*arctan(1/3*3^(1/2)*(2^(2/3)/a^(1/3)*(a+I*a*tan(d*x+c))^(1 
/3)+1))))
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 262 vs. \(2 (126) = 252\).

Time = 0.08 (sec) , antiderivative size = 262, normalized size of antiderivative = 1.50 \[ \int (a+i a \tan (c+d x))^{4/3} \, dx=\frac {6 i \cdot 2^{\frac {1}{3}} a \left (\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}\right )^{\frac {1}{3}} e^{\left (\frac {2}{3} i \, d x + \frac {2}{3} i \, c\right )} + {\left (i \, \sqrt {3} d - d\right )} \left (-\frac {2 i \, a^{4}}{d^{3}}\right )^{\frac {1}{3}} \log \left (\frac {2 \cdot 2^{\frac {1}{3}} a \left (\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}\right )^{\frac {1}{3}} e^{\left (\frac {2}{3} i \, d x + \frac {2}{3} i \, c\right )} - {\left (\sqrt {3} d + i \, d\right )} \left (-\frac {2 i \, a^{4}}{d^{3}}\right )^{\frac {1}{3}}}{2 \, a}\right ) + {\left (-i \, \sqrt {3} d - d\right )} \left (-\frac {2 i \, a^{4}}{d^{3}}\right )^{\frac {1}{3}} \log \left (\frac {2 \cdot 2^{\frac {1}{3}} a \left (\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}\right )^{\frac {1}{3}} e^{\left (\frac {2}{3} i \, d x + \frac {2}{3} i \, c\right )} + {\left (\sqrt {3} d - i \, d\right )} \left (-\frac {2 i \, a^{4}}{d^{3}}\right )^{\frac {1}{3}}}{2 \, a}\right ) + 2 \, \left (-\frac {2 i \, a^{4}}{d^{3}}\right )^{\frac {1}{3}} d \log \left (\frac {2^{\frac {1}{3}} a \left (\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}\right )^{\frac {1}{3}} e^{\left (\frac {2}{3} i \, d x + \frac {2}{3} i \, c\right )} + i \, \left (-\frac {2 i \, a^{4}}{d^{3}}\right )^{\frac {1}{3}} d}{a}\right )}{2 \, d} \] Input:

integrate((a+I*a*tan(d*x+c))^(4/3),x, algorithm="fricas")
 

Output:

1/2*(6*I*2^(1/3)*a*(a/(e^(2*I*d*x + 2*I*c) + 1))^(1/3)*e^(2/3*I*d*x + 2/3* 
I*c) + (I*sqrt(3)*d - d)*(-2*I*a^4/d^3)^(1/3)*log(1/2*(2*2^(1/3)*a*(a/(e^( 
2*I*d*x + 2*I*c) + 1))^(1/3)*e^(2/3*I*d*x + 2/3*I*c) - (sqrt(3)*d + I*d)*( 
-2*I*a^4/d^3)^(1/3))/a) + (-I*sqrt(3)*d - d)*(-2*I*a^4/d^3)^(1/3)*log(1/2* 
(2*2^(1/3)*a*(a/(e^(2*I*d*x + 2*I*c) + 1))^(1/3)*e^(2/3*I*d*x + 2/3*I*c) + 
 (sqrt(3)*d - I*d)*(-2*I*a^4/d^3)^(1/3))/a) + 2*(-2*I*a^4/d^3)^(1/3)*d*log 
((2^(1/3)*a*(a/(e^(2*I*d*x + 2*I*c) + 1))^(1/3)*e^(2/3*I*d*x + 2/3*I*c) + 
I*(-2*I*a^4/d^3)^(1/3)*d)/a))/d
 

Sympy [F]

\[ \int (a+i a \tan (c+d x))^{4/3} \, dx=\int \left (i a \tan {\left (c + d x \right )} + a\right )^{\frac {4}{3}}\, dx \] Input:

integrate((a+I*a*tan(d*x+c))**(4/3),x)
 

Output:

Integral((I*a*tan(c + d*x) + a)**(4/3), x)
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 153, normalized size of antiderivative = 0.87 \[ \int (a+i a \tan (c+d x))^{4/3} \, dx=-\frac {i \, {\left (2 \, \sqrt {3} 2^{\frac {1}{3}} a^{\frac {7}{3}} \arctan \left (\frac {\sqrt {3} 2^{\frac {2}{3}} {\left (2^{\frac {1}{3}} a^{\frac {1}{3}} + 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {1}{3}}\right )}}{6 \, a^{\frac {1}{3}}}\right ) + 2^{\frac {1}{3}} a^{\frac {7}{3}} \log \left (2^{\frac {2}{3}} a^{\frac {2}{3}} + 2^{\frac {1}{3}} {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {1}{3}} a^{\frac {1}{3}} + {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {2}{3}}\right ) - 2 \cdot 2^{\frac {1}{3}} a^{\frac {7}{3}} \log \left (-2^{\frac {1}{3}} a^{\frac {1}{3}} + {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {1}{3}}\right ) - 6 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {1}{3}} a^{2}\right )}}{2 \, a d} \] Input:

integrate((a+I*a*tan(d*x+c))^(4/3),x, algorithm="maxima")
 

Output:

-1/2*I*(2*sqrt(3)*2^(1/3)*a^(7/3)*arctan(1/6*sqrt(3)*2^(2/3)*(2^(1/3)*a^(1 
/3) + 2*(I*a*tan(d*x + c) + a)^(1/3))/a^(1/3)) + 2^(1/3)*a^(7/3)*log(2^(2/ 
3)*a^(2/3) + 2^(1/3)*(I*a*tan(d*x + c) + a)^(1/3)*a^(1/3) + (I*a*tan(d*x + 
 c) + a)^(2/3)) - 2*2^(1/3)*a^(7/3)*log(-2^(1/3)*a^(1/3) + (I*a*tan(d*x + 
c) + a)^(1/3)) - 6*(I*a*tan(d*x + c) + a)^(1/3)*a^2)/(a*d)
 

Giac [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.85 \[ \int (a+i a \tan (c+d x))^{4/3} \, dx=-\frac {i \, {\left (2 \, \sqrt {3} 2^{\frac {1}{3}} a^{\frac {1}{3}} \arctan \left (\frac {\sqrt {3} 2^{\frac {2}{3}} {\left (2^{\frac {1}{3}} a^{\frac {1}{3}} + 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {1}{3}}\right )}}{6 \, a^{\frac {1}{3}}}\right ) + 2^{\frac {1}{3}} a^{\frac {1}{3}} \log \left (2^{\frac {2}{3}} a^{\frac {2}{3}} + 2^{\frac {1}{3}} {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {1}{3}} a^{\frac {1}{3}} + {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {2}{3}}\right ) - 2 \cdot 2^{\frac {1}{3}} a^{\frac {1}{3}} \log \left (-2^{\frac {1}{3}} a^{\frac {1}{3}} + {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {1}{3}}\right ) - 6 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {1}{3}}\right )} a}{2 \, d} \] Input:

integrate((a+I*a*tan(d*x+c))^(4/3),x, algorithm="giac")
 

Output:

-1/2*I*(2*sqrt(3)*2^(1/3)*a^(1/3)*arctan(1/6*sqrt(3)*2^(2/3)*(2^(1/3)*a^(1 
/3) + 2*(I*a*tan(d*x + c) + a)^(1/3))/a^(1/3)) + 2^(1/3)*a^(1/3)*log(2^(2/ 
3)*a^(2/3) + 2^(1/3)*(I*a*tan(d*x + c) + a)^(1/3)*a^(1/3) + (I*a*tan(d*x + 
 c) + a)^(2/3)) - 2*2^(1/3)*a^(1/3)*log(-2^(1/3)*a^(1/3) + (I*a*tan(d*x + 
c) + a)^(1/3)) - 6*(I*a*tan(d*x + c) + a)^(1/3))*a/d
 

Mupad [B] (verification not implemented)

Time = 1.18 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.11 \[ \int (a+i a \tan (c+d x))^{4/3} \, dx=\frac {a\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{1/3}\,3{}\mathrm {i}}{d}-\frac {{\left (2{}\mathrm {i}\right )}^{1/3}\,a^{4/3}\,\ln \left (a^2\,d^2\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{1/3}\,18{}\mathrm {i}+18\,{\left (2{}\mathrm {i}\right )}^{1/3}\,a^{7/3}\,d^2\right )}{d}-\frac {{\left (2{}\mathrm {i}\right )}^{1/3}\,a^{4/3}\,\ln \left (a^2\,d^2\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{1/3}\,18{}\mathrm {i}+18\,{\left (2{}\mathrm {i}\right )}^{1/3}\,a^{7/3}\,d^2\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\right )\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{d}+\frac {{\left (2{}\mathrm {i}\right )}^{1/3}\,a^{4/3}\,\ln \left (a^2\,d^2\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{1/3}\,18{}\mathrm {i}-18\,{\left (2{}\mathrm {i}\right )}^{1/3}\,a^{7/3}\,d^2\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{d} \] Input:

int((a + a*tan(c + d*x)*1i)^(4/3),x)
 

Output:

(a*(a + a*tan(c + d*x)*1i)^(1/3)*3i)/d - (2i^(1/3)*a^(4/3)*log(a^2*d^2*(a 
+ a*tan(c + d*x)*1i)^(1/3)*18i + 18*2i^(1/3)*a^(7/3)*d^2))/d - (2i^(1/3)*a 
^(4/3)*log(a^2*d^2*(a + a*tan(c + d*x)*1i)^(1/3)*18i + 18*2i^(1/3)*a^(7/3) 
*d^2*((3^(1/2)*1i)/2 - 1/2))*((3^(1/2)*1i)/2 - 1/2))/d + (2i^(1/3)*a^(4/3) 
*log(a^2*d^2*(a + a*tan(c + d*x)*1i)^(1/3)*18i - 18*2i^(1/3)*a^(7/3)*d^2*( 
(3^(1/2)*1i)/2 + 1/2))*((3^(1/2)*1i)/2 + 1/2))/d
 

Reduce [F]

\[ \int (a+i a \tan (c+d x))^{4/3} \, dx=a^{\frac {4}{3}} \left (\int \left (\tan \left (d x +c \right ) i +1\right )^{\frac {1}{3}}d x +\left (\int \left (\tan \left (d x +c \right ) i +1\right )^{\frac {1}{3}} \tan \left (d x +c \right )d x \right ) i \right ) \] Input:

int((a+I*a*tan(d*x+c))^(4/3),x)
 

Output:

a**(1/3)*a*(int((tan(c + d*x)*i + 1)**(1/3),x) + int((tan(c + d*x)*i + 1)* 
*(1/3)*tan(c + d*x),x)*i)