\(\int \frac {(a+a \tan (e+f x))^3}{(d \tan (e+f x))^{3/2}} \, dx\) [354]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F(-2)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 114 \[ \int \frac {(a+a \tan (e+f x))^3}{(d \tan (e+f x))^{3/2}} \, dx=-\frac {2 \sqrt {2} a^3 \arctan \left (\frac {\sqrt {d}-\sqrt {d} \tan (e+f x)}{\sqrt {2} \sqrt {d \tan (e+f x)}}\right )}{d^{3/2} f}+\frac {4 a^3 \sqrt {d \tan (e+f x)}}{d^2 f}-\frac {2 \left (a^3+a^3 \tan (e+f x)\right )}{d f \sqrt {d \tan (e+f x)}} \] Output:

-2*2^(1/2)*a^3*arctan(1/2*(d^(1/2)-d^(1/2)*tan(f*x+e))*2^(1/2)/(d*tan(f*x+ 
e))^(1/2))/d^(3/2)/f+4*a^3*(d*tan(f*x+e))^(1/2)/d^2/f-2*(a^3+a^3*tan(f*x+e 
))/d/f/(d*tan(f*x+e))^(1/2)
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(357\) vs. \(2(114)=228\).

Time = 2.01 (sec) , antiderivative size = 357, normalized size of antiderivative = 3.13 \[ \int \frac {(a+a \tan (e+f x))^3}{(d \tan (e+f x))^{3/2}} \, dx=-\frac {a^3 \cos (e+f x) (1+\tan (e+f x))^3 \left (-4 \sin ^2(e+f x)+2 \sin (2 (e+f x))+4 \arctan \left (\sqrt [4]{-\tan ^2(e+f x)}\right ) \cos ^2(e+f x) (-\tan (e+f x))^{5/4} \sqrt [4]{\tan (e+f x)}+4 \text {arctanh}\left (\sqrt [4]{-\tan ^2(e+f x)}\right ) \cos ^2(e+f x) \sqrt [4]{-\tan (e+f x)} \tan ^{\frac {5}{4}}(e+f x)+2 \sqrt {2} \arctan \left (1-\sqrt {2} \sqrt {\tan (e+f x)}\right ) \cos ^2(e+f x) \tan ^{\frac {3}{2}}(e+f x)-2 \sqrt {2} \arctan \left (1+\sqrt {2} \sqrt {\tan (e+f x)}\right ) \cos ^2(e+f x) \tan ^{\frac {3}{2}}(e+f x)+\sqrt {2} \cos ^2(e+f x) \log \left (1-\sqrt {2} \sqrt {\tan (e+f x)}+\tan (e+f x)\right ) \tan ^{\frac {3}{2}}(e+f x)-\sqrt {2} \cos ^2(e+f x) \log \left (1+\sqrt {2} \sqrt {\tan (e+f x)}+\tan (e+f x)\right ) \tan ^{\frac {3}{2}}(e+f x)\right )}{2 f (\cos (e+f x)+\sin (e+f x))^3 (d \tan (e+f x))^{3/2}} \] Input:

Integrate[(a + a*Tan[e + f*x])^3/(d*Tan[e + f*x])^(3/2),x]
 

Output:

-1/2*(a^3*Cos[e + f*x]*(1 + Tan[e + f*x])^3*(-4*Sin[e + f*x]^2 + 2*Sin[2*( 
e + f*x)] + 4*ArcTan[(-Tan[e + f*x]^2)^(1/4)]*Cos[e + f*x]^2*(-Tan[e + f*x 
])^(5/4)*Tan[e + f*x]^(1/4) + 4*ArcTanh[(-Tan[e + f*x]^2)^(1/4)]*Cos[e + f 
*x]^2*(-Tan[e + f*x])^(1/4)*Tan[e + f*x]^(5/4) + 2*Sqrt[2]*ArcTan[1 - Sqrt 
[2]*Sqrt[Tan[e + f*x]]]*Cos[e + f*x]^2*Tan[e + f*x]^(3/2) - 2*Sqrt[2]*ArcT 
an[1 + Sqrt[2]*Sqrt[Tan[e + f*x]]]*Cos[e + f*x]^2*Tan[e + f*x]^(3/2) + Sqr 
t[2]*Cos[e + f*x]^2*Log[1 - Sqrt[2]*Sqrt[Tan[e + f*x]] + Tan[e + f*x]]*Tan 
[e + f*x]^(3/2) - Sqrt[2]*Cos[e + f*x]^2*Log[1 + Sqrt[2]*Sqrt[Tan[e + f*x] 
] + Tan[e + f*x]]*Tan[e + f*x]^(3/2)))/(f*(Cos[e + f*x] + Sin[e + f*x])^3* 
(d*Tan[e + f*x])^(3/2))
 

Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 129, normalized size of antiderivative = 1.13, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3042, 4048, 3042, 4113, 3042, 4015, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \tan (e+f x)+a)^3}{(d \tan (e+f x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a \tan (e+f x)+a)^3}{(d \tan (e+f x))^{3/2}}dx\)

\(\Big \downarrow \) 4048

\(\displaystyle \frac {2 \int \frac {2 d^2 a^3+d^2 \tan ^2(e+f x) a^3+d^2 \tan (e+f x) a^3}{\sqrt {d \tan (e+f x)}}dx}{d^3}-\frac {2 \left (a^3 \tan (e+f x)+a^3\right )}{d f \sqrt {d \tan (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \int \frac {2 d^2 a^3+d^2 \tan (e+f x)^2 a^3+d^2 \tan (e+f x) a^3}{\sqrt {d \tan (e+f x)}}dx}{d^3}-\frac {2 \left (a^3 \tan (e+f x)+a^3\right )}{d f \sqrt {d \tan (e+f x)}}\)

\(\Big \downarrow \) 4113

\(\displaystyle \frac {2 \left (\int \frac {d^2 a^3+d^2 \tan (e+f x) a^3}{\sqrt {d \tan (e+f x)}}dx+\frac {2 a^3 d \sqrt {d \tan (e+f x)}}{f}\right )}{d^3}-\frac {2 \left (a^3 \tan (e+f x)+a^3\right )}{d f \sqrt {d \tan (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \left (\int \frac {d^2 a^3+d^2 \tan (e+f x) a^3}{\sqrt {d \tan (e+f x)}}dx+\frac {2 a^3 d \sqrt {d \tan (e+f x)}}{f}\right )}{d^3}-\frac {2 \left (a^3 \tan (e+f x)+a^3\right )}{d f \sqrt {d \tan (e+f x)}}\)

\(\Big \downarrow \) 4015

\(\displaystyle \frac {2 \left (\frac {2 a^3 d \sqrt {d \tan (e+f x)}}{f}-\frac {2 a^6 d^4 \int \frac {1}{2 d^4 a^6+\cot (e+f x) \left (a^3 d^2-a^3 d^2 \tan (e+f x)\right )^2}d\frac {a^3 d^2-a^3 d^2 \tan (e+f x)}{\sqrt {d \tan (e+f x)}}}{f}\right )}{d^3}-\frac {2 \left (a^3 \tan (e+f x)+a^3\right )}{d f \sqrt {d \tan (e+f x)}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {2 \left (\frac {2 a^3 d \sqrt {d \tan (e+f x)}}{f}-\frac {\sqrt {2} a^3 d^{3/2} \arctan \left (\frac {a^3 d^2-a^3 d^2 \tan (e+f x)}{\sqrt {2} a^3 d^{3/2} \sqrt {d \tan (e+f x)}}\right )}{f}\right )}{d^3}-\frac {2 \left (a^3 \tan (e+f x)+a^3\right )}{d f \sqrt {d \tan (e+f x)}}\)

Input:

Int[(a + a*Tan[e + f*x])^3/(d*Tan[e + f*x])^(3/2),x]
 

Output:

(-2*(a^3 + a^3*Tan[e + f*x]))/(d*f*Sqrt[d*Tan[e + f*x]]) + (2*(-((Sqrt[2]* 
a^3*d^(3/2)*ArcTan[(a^3*d^2 - a^3*d^2*Tan[e + f*x])/(Sqrt[2]*a^3*d^(3/2)*S 
qrt[d*Tan[e + f*x]])])/f) + (2*a^3*d*Sqrt[d*Tan[e + f*x]])/f))/d^3
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4015
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[-2*(d^2/f)   Subst[Int[1/(2*c*d + b*x^2), x], x, (c 
- d*Tan[e + f*x])/Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && 
 EqQ[c^2 - d^2, 0]
 

rule 4048
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)^2*(a + b*Tan[e + f*x])^(m 
 - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2))), x] - Simp[1 
/(d*(n + 1)*(c^2 + d^2))   Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + 
f*x])^(n + 1)*Simp[a^2*d*(b*d*(m - 2) - a*c*(n + 1)) + b*(b*c - 2*a*d)*(b*c 
*(m - 2) + a*d*(n + 1)) - d*(n + 1)*(3*a^2*b*c - b^3*c - a^3*d + 3*a*b^2*d) 
*Tan[e + f*x] - b*(a*d*(2*b*c - a*d)*(m + n - 1) - b^2*(c^2*(m - 2) - d^2*( 
n + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 2] && LtQ 
[n, -1] && IntegerQ[2*m]
 

rule 4113
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[C*((a + 
 b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f*x])^m*Si 
mp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && 
NeQ[A*b^2 - a*b*B + a^2*C, 0] &&  !LeQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(304\) vs. \(2(99)=198\).

Time = 1.72 (sec) , antiderivative size = 305, normalized size of antiderivative = 2.68

method result size
derivativedivides \(\frac {2 a^{3} \left (\sqrt {d \tan \left (f x +e \right )}-\frac {d}{\sqrt {d \tan \left (f x +e \right )}}+2 d \left (\frac {\left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 d}+\frac {\sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (d^{2}\right )^{\frac {1}{4}}}\right )\right )}{f \,d^{2}}\) \(305\)
default \(\frac {2 a^{3} \left (\sqrt {d \tan \left (f x +e \right )}-\frac {d}{\sqrt {d \tan \left (f x +e \right )}}+2 d \left (\frac {\left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 d}+\frac {\sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (d^{2}\right )^{\frac {1}{4}}}\right )\right )}{f \,d^{2}}\) \(305\)
parts \(\frac {2 a^{3} d \left (-\frac {1}{d^{2} \sqrt {d \tan \left (f x +e \right )}}-\frac {\sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 d^{2} \left (d^{2}\right )^{\frac {1}{4}}}\right )}{f}+\frac {2 a^{3} \left (\sqrt {d \tan \left (f x +e \right )}-\frac {\left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8}\right )}{f \,d^{2}}+\frac {3 a^{3} \left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 f \,d^{2}}+\frac {3 a^{3} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 f d \left (d^{2}\right )^{\frac {1}{4}}}\) \(594\)

Input:

int((a+a*tan(f*x+e))^3/(d*tan(f*x+e))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

2/f*a^3/d^2*((d*tan(f*x+e))^(1/2)-d/(d*tan(f*x+e))^(1/2)+2*d*(1/8/d*(d^2)^ 
(1/4)*2^(1/2)*(ln((d*tan(f*x+e)+(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+( 
d^2)^(1/2))/(d*tan(f*x+e)-(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^( 
1/2)))+2*arctan(2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1)-2*arctan(-2^(1 
/2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1))+1/8/(d^2)^(1/4)*2^(1/2)*(ln((d*ta 
n(f*x+e)-(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2))/(d*tan(f*x+ 
e)+(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2)))+2*arctan(2^(1/2) 
/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1)-2*arctan(-2^(1/2)/(d^2)^(1/4)*(d*tan( 
f*x+e))^(1/2)+1))))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.96 \[ \int \frac {(a+a \tan (e+f x))^3}{(d \tan (e+f x))^{3/2}} \, dx=\left [\frac {\sqrt {2} a^{3} d \sqrt {-\frac {1}{d}} \log \left (\frac {2 \, \sqrt {2} \sqrt {d \tan \left (f x + e\right )} \sqrt {-\frac {1}{d}} {\left (\tan \left (f x + e\right ) - 1\right )} + \tan \left (f x + e\right )^{2} - 4 \, \tan \left (f x + e\right ) + 1}{\tan \left (f x + e\right )^{2} + 1}\right ) \tan \left (f x + e\right ) + 2 \, {\left (a^{3} \tan \left (f x + e\right ) - a^{3}\right )} \sqrt {d \tan \left (f x + e\right )}}{d^{2} f \tan \left (f x + e\right )}, \frac {2 \, {\left (\sqrt {2} a^{3} \sqrt {d} \arctan \left (\frac {\sqrt {2} \sqrt {d \tan \left (f x + e\right )} {\left (\tan \left (f x + e\right ) - 1\right )}}{2 \, \sqrt {d} \tan \left (f x + e\right )}\right ) \tan \left (f x + e\right ) + {\left (a^{3} \tan \left (f x + e\right ) - a^{3}\right )} \sqrt {d \tan \left (f x + e\right )}\right )}}{d^{2} f \tan \left (f x + e\right )}\right ] \] Input:

integrate((a+a*tan(f*x+e))^3/(d*tan(f*x+e))^(3/2),x, algorithm="fricas")
 

Output:

[(sqrt(2)*a^3*d*sqrt(-1/d)*log((2*sqrt(2)*sqrt(d*tan(f*x + e))*sqrt(-1/d)* 
(tan(f*x + e) - 1) + tan(f*x + e)^2 - 4*tan(f*x + e) + 1)/(tan(f*x + e)^2 
+ 1))*tan(f*x + e) + 2*(a^3*tan(f*x + e) - a^3)*sqrt(d*tan(f*x + e)))/(d^2 
*f*tan(f*x + e)), 2*(sqrt(2)*a^3*sqrt(d)*arctan(1/2*sqrt(2)*sqrt(d*tan(f*x 
 + e))*(tan(f*x + e) - 1)/(sqrt(d)*tan(f*x + e)))*tan(f*x + e) + (a^3*tan( 
f*x + e) - a^3)*sqrt(d*tan(f*x + e)))/(d^2*f*tan(f*x + e))]
 

Sympy [F]

\[ \int \frac {(a+a \tan (e+f x))^3}{(d \tan (e+f x))^{3/2}} \, dx=a^{3} \left (\int \frac {1}{\left (d \tan {\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx + \int \frac {3 \tan {\left (e + f x \right )}}{\left (d \tan {\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx + \int \frac {3 \tan ^{2}{\left (e + f x \right )}}{\left (d \tan {\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx + \int \frac {\tan ^{3}{\left (e + f x \right )}}{\left (d \tan {\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx\right ) \] Input:

integrate((a+a*tan(f*x+e))**3/(d*tan(f*x+e))**(3/2),x)
 

Output:

a**3*(Integral((d*tan(e + f*x))**(-3/2), x) + Integral(3*tan(e + f*x)/(d*t 
an(e + f*x))**(3/2), x) + Integral(3*tan(e + f*x)**2/(d*tan(e + f*x))**(3/ 
2), x) + Integral(tan(e + f*x)**3/(d*tan(e + f*x))**(3/2), x))
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.04 \[ \int \frac {(a+a \tan (e+f x))^3}{(d \tan (e+f x))^{3/2}} \, dx=\frac {2 \, {\left (a^{3} {\left (\frac {\sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} + 2 \, \sqrt {d \tan \left (f x + e\right )}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} + \frac {\sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} - 2 \, \sqrt {d \tan \left (f x + e\right )}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}}\right )} - \frac {a^{3}}{\sqrt {d \tan \left (f x + e\right )}} + \frac {\sqrt {d \tan \left (f x + e\right )} a^{3}}{d}\right )}}{d f} \] Input:

integrate((a+a*tan(f*x+e))^3/(d*tan(f*x+e))^(3/2),x, algorithm="maxima")
 

Output:

2*(a^3*(sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(d) + 2*sqrt(d*tan(f*x + e 
)))/sqrt(d))/sqrt(d) + sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(d) - 2*sq 
rt(d*tan(f*x + e)))/sqrt(d))/sqrt(d)) - a^3/sqrt(d*tan(f*x + e)) + sqrt(d* 
tan(f*x + e))*a^3/d)/(d*f)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {(a+a \tan (e+f x))^3}{(d \tan (e+f x))^{3/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a+a*tan(f*x+e))^3/(d*tan(f*x+e))^(3/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [B] (verification not implemented)

Time = 1.37 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.04 \[ \int \frac {(a+a \tan (e+f x))^3}{(d \tan (e+f x))^{3/2}} \, dx=\frac {2\,a^3\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}}{d^2\,f}-\frac {2\,a^3}{d\,f\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}}+\frac {\sqrt {2}\,a^3\,\left (2\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}}{2\,\sqrt {d}}\right )+2\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}}{2\,\sqrt {d}}+\frac {\sqrt {2}\,{\left (d\,\mathrm {tan}\left (e+f\,x\right )\right )}^{3/2}}{2\,d^{3/2}}\right )\right )}{d^{3/2}\,f} \] Input:

int((a + a*tan(e + f*x))^3/(d*tan(e + f*x))^(3/2),x)
 

Output:

(2*a^3*(d*tan(e + f*x))^(1/2))/(d^2*f) - (2*a^3)/(d*f*(d*tan(e + f*x))^(1/ 
2)) + (2^(1/2)*a^3*(2*atan((2^(1/2)*(d*tan(e + f*x))^(1/2))/(2*d^(1/2))) + 
 2*atan((2^(1/2)*(d*tan(e + f*x))^(1/2))/(2*d^(1/2)) + (2^(1/2)*(d*tan(e + 
 f*x))^(3/2))/(2*d^(3/2)))))/(d^(3/2)*f)
 

Reduce [F]

\[ \int \frac {(a+a \tan (e+f x))^3}{(d \tan (e+f x))^{3/2}} \, dx=\frac {\sqrt {d}\, a^{3} \left (2 \sqrt {\tan \left (f x +e \right )}+\left (\int \frac {\sqrt {\tan \left (f x +e \right )}}{\tan \left (f x +e \right )^{2}}d x \right ) f +2 \left (\int \frac {\sqrt {\tan \left (f x +e \right )}}{\tan \left (f x +e \right )}d x \right ) f +3 \left (\int \sqrt {\tan \left (f x +e \right )}d x \right ) f \right )}{d^{2} f} \] Input:

int((a+a*tan(f*x+e))^3/(d*tan(f*x+e))^(3/2),x)
 

Output:

(sqrt(d)*a**3*(2*sqrt(tan(e + f*x)) + int(sqrt(tan(e + f*x))/tan(e + f*x)* 
*2,x)*f + 2*int(sqrt(tan(e + f*x))/tan(e + f*x),x)*f + 3*int(sqrt(tan(e + 
f*x)),x)*f))/(d**2*f)