\(\int \cot ^2(e+f x) \sqrt {1+\tan (e+f x)} \, dx\) [387]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 226 \[ \int \cot ^2(e+f x) \sqrt {1+\tan (e+f x)} \, dx=\frac {\sqrt {\frac {1}{2} \left (1+\sqrt {2}\right )} \arctan \left (\frac {\sqrt {2 \left (1+\sqrt {2}\right )}-2 \sqrt {1+\tan (e+f x)}}{\sqrt {2 \left (-1+\sqrt {2}\right )}}\right )}{f}-\frac {\sqrt {\frac {1}{2} \left (1+\sqrt {2}\right )} \arctan \left (\frac {\sqrt {2 \left (1+\sqrt {2}\right )}+2 \sqrt {1+\tan (e+f x)}}{\sqrt {2 \left (-1+\sqrt {2}\right )}}\right )}{f}-\frac {\text {arctanh}\left (\sqrt {1+\tan (e+f x)}\right )}{f}+\frac {\text {arctanh}\left (\frac {\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {1+\tan (e+f x)}}{1+\sqrt {2}+\tan (e+f x)}\right )}{\sqrt {2 \left (1+\sqrt {2}\right )} f}-\frac {\cot (e+f x) \sqrt {1+\tan (e+f x)}}{f} \] Output:

1/2*(2+2*2^(1/2))^(1/2)*arctan(((2+2*2^(1/2))^(1/2)-2*(1+tan(f*x+e))^(1/2) 
)/(-2+2*2^(1/2))^(1/2))/f-1/2*(2+2*2^(1/2))^(1/2)*arctan(((2+2*2^(1/2))^(1 
/2)+2*(1+tan(f*x+e))^(1/2))/(-2+2*2^(1/2))^(1/2))/f-arctanh((1+tan(f*x+e)) 
^(1/2))/f+arctanh((2+2*2^(1/2))^(1/2)*(1+tan(f*x+e))^(1/2)/(1+2^(1/2)+tan( 
f*x+e)))/(2+2*2^(1/2))^(1/2)/f-cot(f*x+e)*(1+tan(f*x+e))^(1/2)/f
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.18 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.45 \[ \int \cot ^2(e+f x) \sqrt {1+\tan (e+f x)} \, dx=-\frac {\text {arctanh}\left (\sqrt {1+\tan (e+f x)}\right )-i \sqrt {1-i} \text {arctanh}\left (\frac {\sqrt {1+\tan (e+f x)}}{\sqrt {1-i}}\right )+i \sqrt {1+i} \text {arctanh}\left (\frac {\sqrt {1+\tan (e+f x)}}{\sqrt {1+i}}\right )+\cot (e+f x) \sqrt {1+\tan (e+f x)}}{f} \] Input:

Integrate[Cot[e + f*x]^2*Sqrt[1 + Tan[e + f*x]],x]
 

Output:

-((ArcTanh[Sqrt[1 + Tan[e + f*x]]] - I*Sqrt[1 - I]*ArcTanh[Sqrt[1 + Tan[e 
+ f*x]]/Sqrt[1 - I]] + I*Sqrt[1 + I]*ArcTanh[Sqrt[1 + Tan[e + f*x]]/Sqrt[1 
 + I]] + Cot[e + f*x]*Sqrt[1 + Tan[e + f*x]])/f)
 

Rubi [A] (verified)

Time = 0.95 (sec) , antiderivative size = 294, normalized size of antiderivative = 1.30, number of steps used = 20, number of rules used = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.905, Rules used = {3042, 4051, 27, 3042, 4136, 27, 3042, 3966, 483, 1447, 1475, 1083, 217, 1478, 25, 1103, 4117, 73, 220}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\tan (e+f x)+1} \cot ^2(e+f x) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\tan (e+f x)+1}}{\tan (e+f x)^2}dx\)

\(\Big \downarrow \) 4051

\(\displaystyle -\int -\frac {\cot (e+f x) \left (-\tan ^2(e+f x)-2 \tan (e+f x)+1\right )}{2 \sqrt {\tan (e+f x)+1}}dx-\frac {\sqrt {\tan (e+f x)+1} \cot (e+f x)}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \int \frac {\cot (e+f x) \left (-\tan ^2(e+f x)-2 \tan (e+f x)+1\right )}{\sqrt {\tan (e+f x)+1}}dx-\frac {\sqrt {\tan (e+f x)+1} \cot (e+f x)}{f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \int \frac {-\tan (e+f x)^2-2 \tan (e+f x)+1}{\tan (e+f x) \sqrt {\tan (e+f x)+1}}dx-\frac {\sqrt {\tan (e+f x)+1} \cot (e+f x)}{f}\)

\(\Big \downarrow \) 4136

\(\displaystyle \frac {1}{2} \left (\int -2 \sqrt {\tan (e+f x)+1}dx+\int \frac {\cot (e+f x) \left (\tan ^2(e+f x)+1\right )}{\sqrt {\tan (e+f x)+1}}dx\right )-\frac {\sqrt {\tan (e+f x)+1} \cot (e+f x)}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (\int \frac {\cot (e+f x) \left (\tan ^2(e+f x)+1\right )}{\sqrt {\tan (e+f x)+1}}dx-2 \int \sqrt {\tan (e+f x)+1}dx\right )-\frac {\sqrt {\tan (e+f x)+1} \cot (e+f x)}{f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\int \frac {\tan (e+f x)^2+1}{\tan (e+f x) \sqrt {\tan (e+f x)+1}}dx-2 \int \sqrt {\tan (e+f x)+1}dx\right )-\frac {\sqrt {\tan (e+f x)+1} \cot (e+f x)}{f}\)

\(\Big \downarrow \) 3966

\(\displaystyle \frac {1}{2} \left (\int \frac {\tan (e+f x)^2+1}{\tan (e+f x) \sqrt {\tan (e+f x)+1}}dx-\frac {2 \int \frac {\sqrt {\tan (e+f x)+1}}{\tan ^2(e+f x)+1}d\tan (e+f x)}{f}\right )-\frac {\sqrt {\tan (e+f x)+1} \cot (e+f x)}{f}\)

\(\Big \downarrow \) 483

\(\displaystyle \frac {1}{2} \left (\int \frac {\tan (e+f x)^2+1}{\tan (e+f x) \sqrt {\tan (e+f x)+1}}dx-\frac {4 \int \frac {\tan (e+f x)+1}{(\tan (e+f x)+1)^2-2 (\tan (e+f x)+1)+2}d\sqrt {\tan (e+f x)+1}}{f}\right )-\frac {\sqrt {\tan (e+f x)+1} \cot (e+f x)}{f}\)

\(\Big \downarrow \) 1447

\(\displaystyle \frac {1}{2} \left (\int \frac {\tan (e+f x)^2+1}{\tan (e+f x) \sqrt {\tan (e+f x)+1}}dx-\frac {4 \left (\frac {1}{2} \int \frac {\tan (e+f x)+\sqrt {2}+1}{(\tan (e+f x)+1)^2-2 (\tan (e+f x)+1)+2}d\sqrt {\tan (e+f x)+1}-\frac {1}{2} \int \frac {-\tan (e+f x)+\sqrt {2}-1}{(\tan (e+f x)+1)^2-2 (\tan (e+f x)+1)+2}d\sqrt {\tan (e+f x)+1}\right )}{f}\right )-\frac {\sqrt {\tan (e+f x)+1} \cot (e+f x)}{f}\)

\(\Big \downarrow \) 1475

\(\displaystyle \frac {1}{2} \left (\int \frac {\tan (e+f x)^2+1}{\tan (e+f x) \sqrt {\tan (e+f x)+1}}dx-\frac {4 \left (\frac {1}{2} \left (\frac {1}{2} \int \frac {1}{\tan (e+f x)-\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1}d\sqrt {\tan (e+f x)+1}+\frac {1}{2} \int \frac {1}{\tan (e+f x)+\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1}d\sqrt {\tan (e+f x)+1}\right )-\frac {1}{2} \int \frac {-\tan (e+f x)+\sqrt {2}-1}{(\tan (e+f x)+1)^2-2 (\tan (e+f x)+1)+2}d\sqrt {\tan (e+f x)+1}\right )}{f}\right )-\frac {\sqrt {\tan (e+f x)+1} \cot (e+f x)}{f}\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {1}{2} \left (\int \frac {\tan (e+f x)^2+1}{\tan (e+f x) \sqrt {\tan (e+f x)+1}}dx-\frac {4 \left (\frac {1}{2} \left (-\int \frac {1}{-\tan (e+f x)+2 \left (1-\sqrt {2}\right )-1}d\left (2 \sqrt {\tan (e+f x)+1}-\sqrt {2 \left (1+\sqrt {2}\right )}\right )-\int \frac {1}{-\tan (e+f x)+2 \left (1-\sqrt {2}\right )-1}d\left (2 \sqrt {\tan (e+f x)+1}+\sqrt {2 \left (1+\sqrt {2}\right )}\right )\right )-\frac {1}{2} \int \frac {-\tan (e+f x)+\sqrt {2}-1}{(\tan (e+f x)+1)^2-2 (\tan (e+f x)+1)+2}d\sqrt {\tan (e+f x)+1}\right )}{f}\right )-\frac {\sqrt {\tan (e+f x)+1} \cot (e+f x)}{f}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{2} \left (\int \frac {\tan (e+f x)^2+1}{\tan (e+f x) \sqrt {\tan (e+f x)+1}}dx-\frac {4 \left (\frac {1}{2} \left (\frac {\arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}-\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )}{\sqrt {2 \left (\sqrt {2}-1\right )}}+\frac {\arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}+\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )-\frac {1}{2} \int \frac {-\tan (e+f x)+\sqrt {2}-1}{(\tan (e+f x)+1)^2-2 (\tan (e+f x)+1)+2}d\sqrt {\tan (e+f x)+1}\right )}{f}\right )-\frac {\sqrt {\tan (e+f x)+1} \cot (e+f x)}{f}\)

\(\Big \downarrow \) 1478

\(\displaystyle \frac {1}{2} \left (\int \frac {\tan (e+f x)^2+1}{\tan (e+f x) \sqrt {\tan (e+f x)+1}}dx-\frac {4 \left (\frac {1}{2} \left (\frac {\int -\frac {\sqrt {2 \left (1+\sqrt {2}\right )}-2 \sqrt {\tan (e+f x)+1}}{\tan (e+f x)-\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1}d\sqrt {\tan (e+f x)+1}}{2 \sqrt {2 \left (1+\sqrt {2}\right )}}+\frac {\int -\frac {2 \sqrt {\tan (e+f x)+1}+\sqrt {2 \left (1+\sqrt {2}\right )}}{\tan (e+f x)+\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1}d\sqrt {\tan (e+f x)+1}}{2 \sqrt {2 \left (1+\sqrt {2}\right )}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}-\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )}{\sqrt {2 \left (\sqrt {2}-1\right )}}+\frac {\arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}+\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )\right )}{f}\right )-\frac {\sqrt {\tan (e+f x)+1} \cot (e+f x)}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} \left (\int \frac {\tan (e+f x)^2+1}{\tan (e+f x) \sqrt {\tan (e+f x)+1}}dx-\frac {4 \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2 \left (1+\sqrt {2}\right )}-2 \sqrt {\tan (e+f x)+1}}{\tan (e+f x)-\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1}d\sqrt {\tan (e+f x)+1}}{2 \sqrt {2 \left (1+\sqrt {2}\right )}}-\frac {\int \frac {2 \sqrt {\tan (e+f x)+1}+\sqrt {2 \left (1+\sqrt {2}\right )}}{\tan (e+f x)+\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1}d\sqrt {\tan (e+f x)+1}}{2 \sqrt {2 \left (1+\sqrt {2}\right )}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}-\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )}{\sqrt {2 \left (\sqrt {2}-1\right )}}+\frac {\arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}+\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )\right )}{f}\right )-\frac {\sqrt {\tan (e+f x)+1} \cot (e+f x)}{f}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {1}{2} \left (\int \frac {\tan (e+f x)^2+1}{\tan (e+f x) \sqrt {\tan (e+f x)+1}}dx-\frac {4 \left (\frac {1}{2} \left (\frac {\arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}-\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )}{\sqrt {2 \left (\sqrt {2}-1\right )}}+\frac {\arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}+\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )+\frac {1}{2} \left (\frac {\log \left (\tan (e+f x)-\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1\right )}{2 \sqrt {2 \left (1+\sqrt {2}\right )}}-\frac {\log \left (\tan (e+f x)+\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1\right )}{2 \sqrt {2 \left (1+\sqrt {2}\right )}}\right )\right )}{f}\right )-\frac {\sqrt {\tan (e+f x)+1} \cot (e+f x)}{f}\)

\(\Big \downarrow \) 4117

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {\cot (e+f x)}{\sqrt {\tan (e+f x)+1}}d\tan (e+f x)}{f}-\frac {4 \left (\frac {1}{2} \left (\frac {\arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}-\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )}{\sqrt {2 \left (\sqrt {2}-1\right )}}+\frac {\arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}+\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )+\frac {1}{2} \left (\frac {\log \left (\tan (e+f x)-\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1\right )}{2 \sqrt {2 \left (1+\sqrt {2}\right )}}-\frac {\log \left (\tan (e+f x)+\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1\right )}{2 \sqrt {2 \left (1+\sqrt {2}\right )}}\right )\right )}{f}\right )-\frac {\sqrt {\tan (e+f x)+1} \cot (e+f x)}{f}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{2} \left (\frac {2 \int \cot (e+f x)d\sqrt {\tan (e+f x)+1}}{f}-\frac {4 \left (\frac {1}{2} \left (\frac {\arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}-\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )}{\sqrt {2 \left (\sqrt {2}-1\right )}}+\frac {\arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}+\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )+\frac {1}{2} \left (\frac {\log \left (\tan (e+f x)-\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1\right )}{2 \sqrt {2 \left (1+\sqrt {2}\right )}}-\frac {\log \left (\tan (e+f x)+\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1\right )}{2 \sqrt {2 \left (1+\sqrt {2}\right )}}\right )\right )}{f}\right )-\frac {\sqrt {\tan (e+f x)+1} \cot (e+f x)}{f}\)

\(\Big \downarrow \) 220

\(\displaystyle \frac {1}{2} \left (-\frac {4 \left (\frac {1}{2} \left (\frac {\arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}-\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )}{\sqrt {2 \left (\sqrt {2}-1\right )}}+\frac {\arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}+\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )+\frac {1}{2} \left (\frac {\log \left (\tan (e+f x)-\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1\right )}{2 \sqrt {2 \left (1+\sqrt {2}\right )}}-\frac {\log \left (\tan (e+f x)+\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1\right )}{2 \sqrt {2 \left (1+\sqrt {2}\right )}}\right )\right )}{f}-\frac {2 \text {arctanh}\left (\sqrt {\tan (e+f x)+1}\right )}{f}\right )-\frac {\sqrt {\tan (e+f x)+1} \cot (e+f x)}{f}\)

Input:

Int[Cot[e + f*x]^2*Sqrt[1 + Tan[e + f*x]],x]
 

Output:

((-2*ArcTanh[Sqrt[1 + Tan[e + f*x]]])/f - (4*((ArcTan[(-Sqrt[2*(1 + Sqrt[2 
])] + 2*Sqrt[1 + Tan[e + f*x]])/Sqrt[2*(-1 + Sqrt[2])]]/Sqrt[2*(-1 + Sqrt[ 
2])] + ArcTan[(Sqrt[2*(1 + Sqrt[2])] + 2*Sqrt[1 + Tan[e + f*x]])/Sqrt[2*(- 
1 + Sqrt[2])]]/Sqrt[2*(-1 + Sqrt[2])])/2 + (Log[1 + Sqrt[2] + Tan[e + f*x] 
 - Sqrt[2*(1 + Sqrt[2])]*Sqrt[1 + Tan[e + f*x]]]/(2*Sqrt[2*(1 + Sqrt[2])]) 
 - Log[1 + Sqrt[2] + Tan[e + f*x] + Sqrt[2*(1 + Sqrt[2])]*Sqrt[1 + Tan[e + 
 f*x]]]/(2*Sqrt[2*(1 + Sqrt[2])]))/2))/f)/2 - (Cot[e + f*x]*Sqrt[1 + Tan[e 
 + f*x]])/f
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 220
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(- 
1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && 
 (LtQ[a, 0] || GtQ[b, 0])
 

rule 483
Int[Sqrt[(c_) + (d_.)*(x_)]/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[2*d 
Subst[Int[x^2/(b*c^2 + a*d^2 - 2*b*c*x^2 + b*x^4), x], x, Sqrt[c + d*x]], x 
] /; FreeQ[{a, b, c, d}, x]
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1447
Int[(x_)^2/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a/c, 2]}, Simp[1/2   Int[(q + x^2)/(a + b*x^2 + c*x^4), x], x] - Simp[1/2 
 Int[(q - x^2)/(a + b*x^2 + c*x^4), x], x]] /; FreeQ[{a, b, c}, x] && LtQ[b 
^2 - 4*a*c, 0] && PosQ[a*c]
 

rule 1475
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[2*(d/e) - b/c, 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^ 
2, x], x], x] + Simp[e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; F 
reeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] && 
 (GtQ[2*(d/e) - b/c, 0] || ( !LtQ[2*(d/e) - b/c, 0] && EqQ[d - e*Rt[a/c, 2] 
, 0]))
 

rule 1478
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[-2*(d/e) - b/c, 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e 
 + q*x - x^2, x], x], x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - 
x^2, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ 
[c*d^2 - a*e^2, 0] &&  !GtQ[b^2 - 4*a*c, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3966
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Su 
bst[Int[(a + x)^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{a, b, c 
, d, n}, x] && NeQ[a^2 + b^2, 0]
 

rule 4051
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a + b*Tan[e + f*x])^(m + 1)*((c + 
d*Tan[e + f*x])^n/(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/((m + 1)*(a^2 + b^2 
))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*c 
*(m + 1) - b*d*n - (b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(m + n + 1)*Tan[e 
 + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] 
&& NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && GtQ[n, 0] && Int 
egerQ[2*m]
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 

rule 4136
Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) 
+ (f_.)*(x_)]), x_Symbol] :> Simp[1/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^ 
n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Simp[ 
(A*b^2 - a*b*B + a^2*C)/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^n*((1 + Tan[ 
e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, 
 C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] & 
&  !GtQ[n, 0] &&  !LeQ[n, -1]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(2388\) vs. \(2(179)=358\).

Time = 141.33 (sec) , antiderivative size = 2389, normalized size of antiderivative = 10.57

method result size
default \(\text {Expression too large to display}\) \(2389\)

Input:

int(cot(f*x+e)^2*(tan(f*x+e)+1)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-1/2/f*cot(f*x+e)*(cos(f*x+e)*arctan(1/4*((4+3*2^(1/2))*(cos(f*x+e)+sin(f* 
x+e))*cos(f*x+e)*(3*2^(1/2)-4)/(2*2^(1/2)*sin(f*x+e)*cos(f*x+e)-2*sin(f*x+ 
e)^2*2^(1/2)-2*sin(f*x+e)*cos(f*x+e)+2*sin(f*x+e)^2+1))^(1/2)/(2*cos(f*x+e 
)^2-1)*(4*sin(f*x+e)*cos(f*x+e)-1-tan(f*x+e))*(-2+2*2^(1/2))^(1/2)*(2*2^(1 
/2)+3)*(3*2^(1/2)-4))*2^(1/2)*((cos(f*x+e)+sin(f*x+e))*cos(f*x+e)/(2*2^(1/ 
2)*sin(f*x+e)*cos(f*x+e)-2*sin(f*x+e)^2*2^(1/2)-2*sin(f*x+e)*cos(f*x+e)+2* 
sin(f*x+e)^2+1))^(1/2)*(-2+2*2^(1/2))^(1/2)*(1+2^(1/2))^(1/2)-2*((cos(f*x+ 
e)+sin(f*x+e))*cos(f*x+e)/(2*2^(1/2)*sin(f*x+e)*cos(f*x+e)-2*sin(f*x+e)^2* 
2^(1/2)-2*sin(f*x+e)*cos(f*x+e)+2*sin(f*x+e)^2+1))^(1/2)*arctan(1/4*((4+3* 
2^(1/2))*(cos(f*x+e)+sin(f*x+e))*cos(f*x+e)*(3*2^(1/2)-4)/(2*2^(1/2)*sin(f 
*x+e)*cos(f*x+e)-2*sin(f*x+e)^2*2^(1/2)-2*sin(f*x+e)*cos(f*x+e)+2*sin(f*x+ 
e)^2+1))^(1/2)/(2*cos(f*x+e)^2-1)*(4*sin(f*x+e)*cos(f*x+e)-1-tan(f*x+e))*( 
-2+2*2^(1/2))^(1/2)*(2*2^(1/2)+3)*(3*2^(1/2)-4))*2^(1/2)*(-2+2*2^(1/2))^(1 
/2)*(1+2^(1/2))^(1/2)*sin(f*x+e)-4*2^(1/2)*(cot(f*x+e)+cot(f*x+e)^2)^(1/2) 
*((cos(f*x+e)+sin(f*x+e))*cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*(1+2^(1/2))^( 
1/2)*cos(f*x+e)+2*ln(-(cot(f*x+e)*cos(f*x+e)-2*cot(f*x+e)+2*sin(f*x+e)*((c 
os(f*x+e)+sin(f*x+e))*cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)+cos(f*x+e)-sin(f* 
x+e)+csc(f*x+e)-1)/(cos(f*x+e)-1))*(cot(f*x+e)+cot(f*x+e)^2)^(1/2)*2^(1/2) 
*(1+2^(1/2))^(1/2)*sin(f*x+e)-cos(f*x+e)*arctan(1/4*((4+3*2^(1/2))*(cos(f* 
x+e)+sin(f*x+e))*cos(f*x+e)*(3*2^(1/2)-4)/(2*2^(1/2)*sin(f*x+e)*cos(f*x...
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 351, normalized size of antiderivative = 1.55 \[ \int \cot ^2(e+f x) \sqrt {1+\tan (e+f x)} \, dx=\frac {f \sqrt {-\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} + 1}{f^{2}}} \log \left (f^{3} \sqrt {-\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} + 1}{f^{2}}} \sqrt {-\frac {1}{f^{4}}} + \sqrt {\tan \left (f x + e\right ) + 1}\right ) \tan \left (f x + e\right ) - f \sqrt {-\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} + 1}{f^{2}}} \log \left (-f^{3} \sqrt {-\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} + 1}{f^{2}}} \sqrt {-\frac {1}{f^{4}}} + \sqrt {\tan \left (f x + e\right ) + 1}\right ) \tan \left (f x + e\right ) - f \sqrt {\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} - 1}{f^{2}}} \log \left (f^{3} \sqrt {\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} - 1}{f^{2}}} \sqrt {-\frac {1}{f^{4}}} + \sqrt {\tan \left (f x + e\right ) + 1}\right ) \tan \left (f x + e\right ) + f \sqrt {\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} - 1}{f^{2}}} \log \left (-f^{3} \sqrt {\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} - 1}{f^{2}}} \sqrt {-\frac {1}{f^{4}}} + \sqrt {\tan \left (f x + e\right ) + 1}\right ) \tan \left (f x + e\right ) - \log \left (\sqrt {\tan \left (f x + e\right ) + 1} + 1\right ) \tan \left (f x + e\right ) + \log \left (\sqrt {\tan \left (f x + e\right ) + 1} - 1\right ) \tan \left (f x + e\right ) - 2 \, \sqrt {\tan \left (f x + e\right ) + 1}}{2 \, f \tan \left (f x + e\right )} \] Input:

integrate(cot(f*x+e)^2*(1+tan(f*x+e))^(1/2),x, algorithm="fricas")
 

Output:

1/2*(f*sqrt(-(f^2*sqrt(-1/f^4) + 1)/f^2)*log(f^3*sqrt(-(f^2*sqrt(-1/f^4) + 
 1)/f^2)*sqrt(-1/f^4) + sqrt(tan(f*x + e) + 1))*tan(f*x + e) - f*sqrt(-(f^ 
2*sqrt(-1/f^4) + 1)/f^2)*log(-f^3*sqrt(-(f^2*sqrt(-1/f^4) + 1)/f^2)*sqrt(- 
1/f^4) + sqrt(tan(f*x + e) + 1))*tan(f*x + e) - f*sqrt((f^2*sqrt(-1/f^4) - 
 1)/f^2)*log(f^3*sqrt((f^2*sqrt(-1/f^4) - 1)/f^2)*sqrt(-1/f^4) + sqrt(tan( 
f*x + e) + 1))*tan(f*x + e) + f*sqrt((f^2*sqrt(-1/f^4) - 1)/f^2)*log(-f^3* 
sqrt((f^2*sqrt(-1/f^4) - 1)/f^2)*sqrt(-1/f^4) + sqrt(tan(f*x + e) + 1))*ta 
n(f*x + e) - log(sqrt(tan(f*x + e) + 1) + 1)*tan(f*x + e) + log(sqrt(tan(f 
*x + e) + 1) - 1)*tan(f*x + e) - 2*sqrt(tan(f*x + e) + 1))/(f*tan(f*x + e) 
)
 

Sympy [F]

\[ \int \cot ^2(e+f x) \sqrt {1+\tan (e+f x)} \, dx=\int \sqrt {\tan {\left (e + f x \right )} + 1} \cot ^{2}{\left (e + f x \right )}\, dx \] Input:

integrate(cot(f*x+e)**2*(1+tan(f*x+e))**(1/2),x)
 

Output:

Integral(sqrt(tan(e + f*x) + 1)*cot(e + f*x)**2, x)
 

Maxima [F]

\[ \int \cot ^2(e+f x) \sqrt {1+\tan (e+f x)} \, dx=\int { \sqrt {\tan \left (f x + e\right ) + 1} \cot \left (f x + e\right )^{2} \,d x } \] Input:

integrate(cot(f*x+e)^2*(1+tan(f*x+e))^(1/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(tan(f*x + e) + 1)*cot(f*x + e)^2, x)
 

Giac [A] (verification not implemented)

Time = 0.52 (sec) , antiderivative size = 320, normalized size of antiderivative = 1.42 \[ \int \cot ^2(e+f x) \sqrt {1+\tan (e+f x)} \, dx=-\frac {\log \left (\sqrt {\tan \left (f x + e\right ) + 1} + 1\right )}{2 \, f} + \frac {\log \left ({\left | \sqrt {\tan \left (f x + e\right ) + 1} - 1 \right |}\right )}{2 \, f} - \frac {{\left (f^{2} \sqrt {\sqrt {2} + 1} + f \sqrt {\sqrt {2} - 1} {\left | f \right |}\right )} \arctan \left (\frac {2^{\frac {3}{4}} {\left (2^{\frac {1}{4}} \sqrt {\sqrt {2} + 2} + 2 \, \sqrt {\tan \left (f x + e\right ) + 1}\right )}}{2 \, \sqrt {-\sqrt {2} + 2}}\right )}{2 \, f^{3}} - \frac {{\left (f^{2} \sqrt {\sqrt {2} + 1} + f \sqrt {\sqrt {2} - 1} {\left | f \right |}\right )} \arctan \left (-\frac {2^{\frac {3}{4}} {\left (2^{\frac {1}{4}} \sqrt {\sqrt {2} + 2} - 2 \, \sqrt {\tan \left (f x + e\right ) + 1}\right )}}{2 \, \sqrt {-\sqrt {2} + 2}}\right )}{2 \, f^{3}} - \frac {{\left (f^{2} \sqrt {\sqrt {2} - 1} - f \sqrt {\sqrt {2} + 1} {\left | f \right |}\right )} \log \left (2^{\frac {1}{4}} \sqrt {\sqrt {2} + 2} \sqrt {\tan \left (f x + e\right ) + 1} + \sqrt {2} + \tan \left (f x + e\right ) + 1\right )}{4 \, f^{3}} + \frac {{\left (f^{2} \sqrt {\sqrt {2} - 1} - f \sqrt {\sqrt {2} + 1} {\left | f \right |}\right )} \log \left (-2^{\frac {1}{4}} \sqrt {\sqrt {2} + 2} \sqrt {\tan \left (f x + e\right ) + 1} + \sqrt {2} + \tan \left (f x + e\right ) + 1\right )}{4 \, f^{3}} - \frac {\sqrt {\tan \left (f x + e\right ) + 1}}{f \tan \left (f x + e\right )} \] Input:

integrate(cot(f*x+e)^2*(1+tan(f*x+e))^(1/2),x, algorithm="giac")
 

Output:

-1/2*log(sqrt(tan(f*x + e) + 1) + 1)/f + 1/2*log(abs(sqrt(tan(f*x + e) + 1 
) - 1))/f - 1/2*(f^2*sqrt(sqrt(2) + 1) + f*sqrt(sqrt(2) - 1)*abs(f))*arcta 
n(1/2*2^(3/4)*(2^(1/4)*sqrt(sqrt(2) + 2) + 2*sqrt(tan(f*x + e) + 1))/sqrt( 
-sqrt(2) + 2))/f^3 - 1/2*(f^2*sqrt(sqrt(2) + 1) + f*sqrt(sqrt(2) - 1)*abs( 
f))*arctan(-1/2*2^(3/4)*(2^(1/4)*sqrt(sqrt(2) + 2) - 2*sqrt(tan(f*x + e) + 
 1))/sqrt(-sqrt(2) + 2))/f^3 - 1/4*(f^2*sqrt(sqrt(2) - 1) - f*sqrt(sqrt(2) 
 + 1)*abs(f))*log(2^(1/4)*sqrt(sqrt(2) + 2)*sqrt(tan(f*x + e) + 1) + sqrt( 
2) + tan(f*x + e) + 1)/f^3 + 1/4*(f^2*sqrt(sqrt(2) - 1) - f*sqrt(sqrt(2) + 
 1)*abs(f))*log(-2^(1/4)*sqrt(sqrt(2) + 2)*sqrt(tan(f*x + e) + 1) + sqrt(2 
) + tan(f*x + e) + 1)/f^3 - sqrt(tan(f*x + e) + 1)/(f*tan(f*x + e))
 

Mupad [B] (verification not implemented)

Time = 1.09 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.54 \[ \int \cot ^2(e+f x) \sqrt {1+\tan (e+f x)} \, dx=\frac {\mathrm {atan}\left (\sqrt {\mathrm {tan}\left (e+f\,x\right )+1}\,1{}\mathrm {i}\right )\,1{}\mathrm {i}}{f}+\frac {\sqrt {\mathrm {tan}\left (e+f\,x\right )+1}}{f-f\,\left (\mathrm {tan}\left (e+f\,x\right )+1\right )}+\mathrm {atan}\left (f\,\sqrt {\frac {-\frac {1}{4}-\frac {1}{4}{}\mathrm {i}}{f^2}}\,\sqrt {\mathrm {tan}\left (e+f\,x\right )+1}\,\left (1-\mathrm {i}\right )\right )\,\sqrt {\frac {-\frac {1}{4}-\frac {1}{4}{}\mathrm {i}}{f^2}}\,2{}\mathrm {i}-\mathrm {atan}\left (f\,\sqrt {\frac {-\frac {1}{4}+\frac {1}{4}{}\mathrm {i}}{f^2}}\,\sqrt {\mathrm {tan}\left (e+f\,x\right )+1}\,\left (1+1{}\mathrm {i}\right )\right )\,\sqrt {\frac {-\frac {1}{4}+\frac {1}{4}{}\mathrm {i}}{f^2}}\,2{}\mathrm {i} \] Input:

int(cot(e + f*x)^2*(tan(e + f*x) + 1)^(1/2),x)
                                                                                    
                                                                                    
 

Output:

(atan((tan(e + f*x) + 1)^(1/2)*1i)*1i)/f + (tan(e + f*x) + 1)^(1/2)/(f - f 
*(tan(e + f*x) + 1)) + atan(f*((- 1/4 - 1i/4)/f^2)^(1/2)*(tan(e + f*x) + 1 
)^(1/2)*(1 - 1i))*((- 1/4 - 1i/4)/f^2)^(1/2)*2i - atan(f*((- 1/4 + 1i/4)/f 
^2)^(1/2)*(tan(e + f*x) + 1)^(1/2)*(1 + 1i))*((- 1/4 + 1i/4)/f^2)^(1/2)*2i
 

Reduce [F]

\[ \int \cot ^2(e+f x) \sqrt {1+\tan (e+f x)} \, dx=\int \sqrt {\tan \left (f x +e \right )+1}\, \cot \left (f x +e \right )^{2}d x \] Input:

int(cot(f*x+e)^2*(1+tan(f*x+e))^(1/2),x)
 

Output:

int(sqrt(tan(e + f*x) + 1)*cot(e + f*x)**2,x)