\(\int \cot (e+f x) (1+\tan (e+f x))^{3/2} \, dx\) [392]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 193 \[ \int \cot (e+f x) (1+\tan (e+f x))^{3/2} \, dx=-\frac {\sqrt {1+\sqrt {2}} \arctan \left (\frac {\sqrt {2 \left (1+\sqrt {2}\right )}-2 \sqrt {1+\tan (e+f x)}}{\sqrt {2 \left (-1+\sqrt {2}\right )}}\right )}{f}+\frac {\sqrt {1+\sqrt {2}} \arctan \left (\frac {\sqrt {2 \left (1+\sqrt {2}\right )}+2 \sqrt {1+\tan (e+f x)}}{\sqrt {2 \left (-1+\sqrt {2}\right )}}\right )}{f}-\frac {2 \text {arctanh}\left (\sqrt {1+\tan (e+f x)}\right )}{f}+\frac {\text {arctanh}\left (\frac {\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {1+\tan (e+f x)}}{1+\sqrt {2}+\tan (e+f x)}\right )}{\sqrt {1+\sqrt {2}} f} \] Output:

-(1+2^(1/2))^(1/2)*arctan(((2+2*2^(1/2))^(1/2)-2*(1+tan(f*x+e))^(1/2))/(-2 
+2*2^(1/2))^(1/2))/f+(1+2^(1/2))^(1/2)*arctan(((2+2*2^(1/2))^(1/2)+2*(1+ta 
n(f*x+e))^(1/2))/(-2+2*2^(1/2))^(1/2))/f-2*arctanh((1+tan(f*x+e))^(1/2))/f 
+arctanh((2+2*2^(1/2))^(1/2)*(1+tan(f*x+e))^(1/2)/(1+2^(1/2)+tan(f*x+e)))/ 
(1+2^(1/2))^(1/2)/f
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.05 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.40 \[ \int \cot (e+f x) (1+\tan (e+f x))^{3/2} \, dx=\frac {-2 \text {arctanh}\left (\sqrt {1+\tan (e+f x)}\right )+(1-i)^{3/2} \text {arctanh}\left (\frac {\sqrt {1+\tan (e+f x)}}{\sqrt {1-i}}\right )+(1+i)^{3/2} \text {arctanh}\left (\frac {\sqrt {1+\tan (e+f x)}}{\sqrt {1+i}}\right )}{f} \] Input:

Integrate[Cot[e + f*x]*(1 + Tan[e + f*x])^(3/2),x]
 

Output:

(-2*ArcTanh[Sqrt[1 + Tan[e + f*x]]] + (1 - I)^(3/2)*ArcTanh[Sqrt[1 + Tan[e 
 + f*x]]/Sqrt[1 - I]] + (1 + I)^(3/2)*ArcTanh[Sqrt[1 + Tan[e + f*x]]/Sqrt[ 
1 + I]])/f
 

Rubi [A] (verified)

Time = 0.75 (sec) , antiderivative size = 278, normalized size of antiderivative = 1.44, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.789, Rules used = {3042, 4056, 27, 3042, 3966, 484, 1407, 1142, 25, 1083, 217, 1103, 4117, 73, 220}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (\tan (e+f x)+1)^{3/2} \cot (e+f x) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(\tan (e+f x)+1)^{3/2}}{\tan (e+f x)}dx\)

\(\Big \downarrow \) 4056

\(\displaystyle \int \frac {2}{\sqrt {\tan (e+f x)+1}}dx+\int \frac {\cot (e+f x) \left (\tan ^2(e+f x)+1\right )}{\sqrt {\tan (e+f x)+1}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \int \frac {1}{\sqrt {\tan (e+f x)+1}}dx+\int \frac {\cot (e+f x) \left (\tan ^2(e+f x)+1\right )}{\sqrt {\tan (e+f x)+1}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 \int \frac {1}{\sqrt {\tan (e+f x)+1}}dx+\int \frac {\tan (e+f x)^2+1}{\tan (e+f x) \sqrt {\tan (e+f x)+1}}dx\)

\(\Big \downarrow \) 3966

\(\displaystyle \frac {2 \int \frac {1}{\sqrt {\tan (e+f x)+1} \left (\tan ^2(e+f x)+1\right )}d\tan (e+f x)}{f}+\int \frac {\tan (e+f x)^2+1}{\tan (e+f x) \sqrt {\tan (e+f x)+1}}dx\)

\(\Big \downarrow \) 484

\(\displaystyle \int \frac {\tan (e+f x)^2+1}{\tan (e+f x) \sqrt {\tan (e+f x)+1}}dx+\frac {4 \int \frac {1}{(\tan (e+f x)+1)^2-2 (\tan (e+f x)+1)+2}d\sqrt {\tan (e+f x)+1}}{f}\)

\(\Big \downarrow \) 1407

\(\displaystyle \int \frac {\tan (e+f x)^2+1}{\tan (e+f x) \sqrt {\tan (e+f x)+1}}dx+\frac {4 \left (\frac {\int \frac {\sqrt {2 \left (1+\sqrt {2}\right )}-\sqrt {\tan (e+f x)+1}}{\tan (e+f x)-\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1}d\sqrt {\tan (e+f x)+1}}{4 \sqrt {1+\sqrt {2}}}+\frac {\int \frac {\sqrt {\tan (e+f x)+1}+\sqrt {2 \left (1+\sqrt {2}\right )}}{\tan (e+f x)+\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1}d\sqrt {\tan (e+f x)+1}}{4 \sqrt {1+\sqrt {2}}}\right )}{f}\)

\(\Big \downarrow \) 1142

\(\displaystyle \int \frac {\tan (e+f x)^2+1}{\tan (e+f x) \sqrt {\tan (e+f x)+1}}dx+\frac {4 \left (\frac {\sqrt {\frac {1}{2} \left (1+\sqrt {2}\right )} \int \frac {1}{\tan (e+f x)-\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1}d\sqrt {\tan (e+f x)+1}-\frac {1}{2} \int -\frac {\sqrt {2 \left (1+\sqrt {2}\right )}-2 \sqrt {\tan (e+f x)+1}}{\tan (e+f x)-\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1}d\sqrt {\tan (e+f x)+1}}{4 \sqrt {1+\sqrt {2}}}+\frac {\sqrt {\frac {1}{2} \left (1+\sqrt {2}\right )} \int \frac {1}{\tan (e+f x)+\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1}d\sqrt {\tan (e+f x)+1}+\frac {1}{2} \int \frac {2 \sqrt {\tan (e+f x)+1}+\sqrt {2 \left (1+\sqrt {2}\right )}}{\tan (e+f x)+\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1}d\sqrt {\tan (e+f x)+1}}{4 \sqrt {1+\sqrt {2}}}\right )}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \int \frac {\tan (e+f x)^2+1}{\tan (e+f x) \sqrt {\tan (e+f x)+1}}dx+\frac {4 \left (\frac {\sqrt {\frac {1}{2} \left (1+\sqrt {2}\right )} \int \frac {1}{\tan (e+f x)-\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1}d\sqrt {\tan (e+f x)+1}+\frac {1}{2} \int \frac {\sqrt {2 \left (1+\sqrt {2}\right )}-2 \sqrt {\tan (e+f x)+1}}{\tan (e+f x)-\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1}d\sqrt {\tan (e+f x)+1}}{4 \sqrt {1+\sqrt {2}}}+\frac {\sqrt {\frac {1}{2} \left (1+\sqrt {2}\right )} \int \frac {1}{\tan (e+f x)+\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1}d\sqrt {\tan (e+f x)+1}+\frac {1}{2} \int \frac {2 \sqrt {\tan (e+f x)+1}+\sqrt {2 \left (1+\sqrt {2}\right )}}{\tan (e+f x)+\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1}d\sqrt {\tan (e+f x)+1}}{4 \sqrt {1+\sqrt {2}}}\right )}{f}\)

\(\Big \downarrow \) 1083

\(\displaystyle \int \frac {\tan (e+f x)^2+1}{\tan (e+f x) \sqrt {\tan (e+f x)+1}}dx+\frac {4 \left (\frac {\frac {1}{2} \int \frac {\sqrt {2 \left (1+\sqrt {2}\right )}-2 \sqrt {\tan (e+f x)+1}}{\tan (e+f x)-\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1}d\sqrt {\tan (e+f x)+1}-\sqrt {2 \left (1+\sqrt {2}\right )} \int \frac {1}{-\tan (e+f x)+2 \left (1-\sqrt {2}\right )-1}d\left (2 \sqrt {\tan (e+f x)+1}-\sqrt {2 \left (1+\sqrt {2}\right )}\right )}{4 \sqrt {1+\sqrt {2}}}+\frac {\frac {1}{2} \int \frac {2 \sqrt {\tan (e+f x)+1}+\sqrt {2 \left (1+\sqrt {2}\right )}}{\tan (e+f x)+\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1}d\sqrt {\tan (e+f x)+1}-\sqrt {2 \left (1+\sqrt {2}\right )} \int \frac {1}{-\tan (e+f x)+2 \left (1-\sqrt {2}\right )-1}d\left (2 \sqrt {\tan (e+f x)+1}+\sqrt {2 \left (1+\sqrt {2}\right )}\right )}{4 \sqrt {1+\sqrt {2}}}\right )}{f}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {4 \left (\frac {\frac {1}{2} \int \frac {\sqrt {2 \left (1+\sqrt {2}\right )}-2 \sqrt {\tan (e+f x)+1}}{\tan (e+f x)-\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1}d\sqrt {\tan (e+f x)+1}+\sqrt {\frac {1+\sqrt {2}}{\sqrt {2}-1}} \arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}-\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )}{4 \sqrt {1+\sqrt {2}}}+\frac {\frac {1}{2} \int \frac {2 \sqrt {\tan (e+f x)+1}+\sqrt {2 \left (1+\sqrt {2}\right )}}{\tan (e+f x)+\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1}d\sqrt {\tan (e+f x)+1}+\sqrt {\frac {1+\sqrt {2}}{\sqrt {2}-1}} \arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}+\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )}{4 \sqrt {1+\sqrt {2}}}\right )}{f}+\int \frac {\tan (e+f x)^2+1}{\tan (e+f x) \sqrt {\tan (e+f x)+1}}dx\)

\(\Big \downarrow \) 1103

\(\displaystyle \int \frac {\tan (e+f x)^2+1}{\tan (e+f x) \sqrt {\tan (e+f x)+1}}dx+\frac {4 \left (\frac {\sqrt {\frac {1+\sqrt {2}}{\sqrt {2}-1}} \arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}-\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )-\frac {1}{2} \log \left (\tan (e+f x)-\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1\right )}{4 \sqrt {1+\sqrt {2}}}+\frac {\sqrt {\frac {1+\sqrt {2}}{\sqrt {2}-1}} \arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}+\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )+\frac {1}{2} \log \left (\tan (e+f x)+\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1\right )}{4 \sqrt {1+\sqrt {2}}}\right )}{f}\)

\(\Big \downarrow \) 4117

\(\displaystyle \frac {\int \frac {\cot (e+f x)}{\sqrt {\tan (e+f x)+1}}d\tan (e+f x)}{f}+\frac {4 \left (\frac {\sqrt {\frac {1+\sqrt {2}}{\sqrt {2}-1}} \arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}-\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )-\frac {1}{2} \log \left (\tan (e+f x)-\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1\right )}{4 \sqrt {1+\sqrt {2}}}+\frac {\sqrt {\frac {1+\sqrt {2}}{\sqrt {2}-1}} \arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}+\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )+\frac {1}{2} \log \left (\tan (e+f x)+\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1\right )}{4 \sqrt {1+\sqrt {2}}}\right )}{f}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {2 \int \cot (e+f x)d\sqrt {\tan (e+f x)+1}}{f}+\frac {4 \left (\frac {\sqrt {\frac {1+\sqrt {2}}{\sqrt {2}-1}} \arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}-\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )-\frac {1}{2} \log \left (\tan (e+f x)-\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1\right )}{4 \sqrt {1+\sqrt {2}}}+\frac {\sqrt {\frac {1+\sqrt {2}}{\sqrt {2}-1}} \arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}+\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )+\frac {1}{2} \log \left (\tan (e+f x)+\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1\right )}{4 \sqrt {1+\sqrt {2}}}\right )}{f}\)

\(\Big \downarrow \) 220

\(\displaystyle \frac {4 \left (\frac {\sqrt {\frac {1+\sqrt {2}}{\sqrt {2}-1}} \arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}-\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )-\frac {1}{2} \log \left (\tan (e+f x)-\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1\right )}{4 \sqrt {1+\sqrt {2}}}+\frac {\sqrt {\frac {1+\sqrt {2}}{\sqrt {2}-1}} \arctan \left (\frac {2 \sqrt {\tan (e+f x)+1}+\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )+\frac {1}{2} \log \left (\tan (e+f x)+\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1\right )}{4 \sqrt {1+\sqrt {2}}}\right )}{f}-\frac {2 \text {arctanh}\left (\sqrt {\tan (e+f x)+1}\right )}{f}\)

Input:

Int[Cot[e + f*x]*(1 + Tan[e + f*x])^(3/2),x]
 

Output:

(-2*ArcTanh[Sqrt[1 + Tan[e + f*x]]])/f + (4*((Sqrt[(1 + Sqrt[2])/(-1 + Sqr 
t[2])]*ArcTan[(-Sqrt[2*(1 + Sqrt[2])] + 2*Sqrt[1 + Tan[e + f*x]])/Sqrt[2*( 
-1 + Sqrt[2])]] - Log[1 + Sqrt[2] + Tan[e + f*x] - Sqrt[2*(1 + Sqrt[2])]*S 
qrt[1 + Tan[e + f*x]]]/2)/(4*Sqrt[1 + Sqrt[2]]) + (Sqrt[(1 + Sqrt[2])/(-1 
+ Sqrt[2])]*ArcTan[(Sqrt[2*(1 + Sqrt[2])] + 2*Sqrt[1 + Tan[e + f*x]])/Sqrt 
[2*(-1 + Sqrt[2])]] + Log[1 + Sqrt[2] + Tan[e + f*x] + Sqrt[2*(1 + Sqrt[2] 
)]*Sqrt[1 + Tan[e + f*x]]]/2)/(4*Sqrt[1 + Sqrt[2]])))/f
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 220
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(- 
1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && 
 (LtQ[a, 0] || GtQ[b, 0])
 

rule 484
Int[1/(Sqrt[(c_) + (d_.)*(x_)]*((a_) + (b_.)*(x_)^2)), x_Symbol] :> Simp[2* 
d   Subst[Int[1/(b*c^2 + a*d^2 - 2*b*c*x^2 + b*x^4), x], x, Sqrt[c + d*x]], 
 x] /; FreeQ[{a, b, c, d}, x]
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 1407
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[a/ 
c, 2]}, With[{r = Rt[2*q - b/c, 2]}, Simp[1/(2*c*q*r)   Int[(r - x)/(q - r* 
x + x^2), x], x] + Simp[1/(2*c*q*r)   Int[(r + x)/(q + r*x + x^2), x], x]]] 
 /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[b^2 - 4*a*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3966
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Su 
bst[Int[(a + x)^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{a, b, c 
, d, n}, x] && NeQ[a^2 + b^2, 0]
 

rule 4056
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(3/2)/((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)]), x_Symbol] :> Simp[1/(c^2 + d^2)   Int[Simp[a^2*c - b^2*c + 
2*a*b*d + (2*a*b*c - a^2*d + b^2*d)*Tan[e + f*x], x]/Sqrt[a + b*Tan[e + f*x 
]], x], x] + Simp[(b*c - a*d)^2/(c^2 + d^2)   Int[(1 + Tan[e + f*x]^2)/(Sqr 
t[a + b*Tan[e + f*x]]*(c + d*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e 
, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(2155\) vs. \(2(151)=302\).

Time = 151.05 (sec) , antiderivative size = 2156, normalized size of antiderivative = 11.17

method result size
default \(\text {Expression too large to display}\) \(2156\)

Input:

int(cot(f*x+e)*(tan(f*x+e)+1)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/2/f*cot(f*x+e)*(3*(-(cos(f*x+e)+sin(f*x+e))*cos(f*x+e)/(2*sin(f*x+e)^2*2 
^(1/2)-2*2^(1/2)*sin(f*x+e)*cos(f*x+e)-2*sin(f*x+e)^2+2*sin(f*x+e)*cos(f*x 
+e)-1))^(1/2)*arctan(1/4*(-(4+3*2^(1/2))*(cos(f*x+e)+sin(f*x+e))*cos(f*x+e 
)*(3*2^(1/2)-4)/(2*sin(f*x+e)^2*2^(1/2)-2*2^(1/2)*sin(f*x+e)*cos(f*x+e)-2* 
sin(f*x+e)^2+2*sin(f*x+e)*cos(f*x+e)-1))^(1/2)/(2*cos(f*x+e)^2-1)*(4*sin(f 
*x+e)*cos(f*x+e)-1-tan(f*x+e))*(-2+2*2^(1/2))^(1/2)*(2*2^(1/2)+3)*(3*2^(1/ 
2)-4))*2^(1/2)*(-2+2*2^(1/2))^(1/2)*(1+2^(1/2))^(1/2)*sin(f*x+e)-(-(cos(f* 
x+e)+sin(f*x+e))*cos(f*x+e)/(2*sin(f*x+e)^2*2^(1/2)-2*2^(1/2)*sin(f*x+e)*c 
os(f*x+e)-2*sin(f*x+e)^2+2*sin(f*x+e)*cos(f*x+e)-1))^(1/2)*arctan(1/4*(-(4 
+3*2^(1/2))*(cos(f*x+e)+sin(f*x+e))*cos(f*x+e)*(3*2^(1/2)-4)/(2*sin(f*x+e) 
^2*2^(1/2)-2*2^(1/2)*sin(f*x+e)*cos(f*x+e)-2*sin(f*x+e)^2+2*sin(f*x+e)*cos 
(f*x+e)-1))^(1/2)/(2*cos(f*x+e)^2-1)*(4*sin(f*x+e)*cos(f*x+e)-1-tan(f*x+e) 
)*(-2+2*2^(1/2))^(1/2)*(2*2^(1/2)+3)*(3*2^(1/2)-4))*cos(f*x+e)*2^(1/2)*(-2 
+2*2^(1/2))^(1/2)*(1+2^(1/2))^(1/2)-4*(-(cos(f*x+e)+sin(f*x+e))*cos(f*x+e) 
/(2*sin(f*x+e)^2*2^(1/2)-2*2^(1/2)*sin(f*x+e)*cos(f*x+e)-2*sin(f*x+e)^2+2* 
sin(f*x+e)*cos(f*x+e)-1))^(1/2)*arctan(1/4*(-(4+3*2^(1/2))*(cos(f*x+e)+sin 
(f*x+e))*cos(f*x+e)*(3*2^(1/2)-4)/(2*sin(f*x+e)^2*2^(1/2)-2*2^(1/2)*sin(f* 
x+e)*cos(f*x+e)-2*sin(f*x+e)^2+2*sin(f*x+e)*cos(f*x+e)-1))^(1/2)/(2*cos(f* 
x+e)^2-1)*(4*sin(f*x+e)*cos(f*x+e)-1-tan(f*x+e))*(-2+2*2^(1/2))^(1/2)*(2*2 
^(1/2)+3)*(3*2^(1/2)-4))*(-2+2*2^(1/2))^(1/2)*(1+2^(1/2))^(1/2)*sin(f*x...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 344 vs. \(2 (151) = 302\).

Time = 0.09 (sec) , antiderivative size = 344, normalized size of antiderivative = 1.78 \[ \int \cot (e+f x) (1+\tan (e+f x))^{3/2} \, dx=\frac {\sqrt {2} f \sqrt {-\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} + 1}{f^{2}}} \log \left (\sqrt {2} {\left (f^{3} \sqrt {-\frac {1}{f^{4}}} + f\right )} \sqrt {-\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} + 1}{f^{2}}} + 2 \, \sqrt {\tan \left (f x + e\right ) + 1}\right ) - \sqrt {2} f \sqrt {-\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} + 1}{f^{2}}} \log \left (-\sqrt {2} {\left (f^{3} \sqrt {-\frac {1}{f^{4}}} + f\right )} \sqrt {-\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} + 1}{f^{2}}} + 2 \, \sqrt {\tan \left (f x + e\right ) + 1}\right ) - \sqrt {2} f \sqrt {\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} - 1}{f^{2}}} \log \left (\sqrt {2} {\left (f^{3} \sqrt {-\frac {1}{f^{4}}} - f\right )} \sqrt {\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} - 1}{f^{2}}} + 2 \, \sqrt {\tan \left (f x + e\right ) + 1}\right ) + \sqrt {2} f \sqrt {\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} - 1}{f^{2}}} \log \left (-\sqrt {2} {\left (f^{3} \sqrt {-\frac {1}{f^{4}}} - f\right )} \sqrt {\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} - 1}{f^{2}}} + 2 \, \sqrt {\tan \left (f x + e\right ) + 1}\right ) - 2 \, \log \left (\sqrt {\tan \left (f x + e\right ) + 1} + 1\right ) + 2 \, \log \left (\sqrt {\tan \left (f x + e\right ) + 1} - 1\right )}{2 \, f} \] Input:

integrate(cot(f*x+e)*(1+tan(f*x+e))^(3/2),x, algorithm="fricas")
 

Output:

1/2*(sqrt(2)*f*sqrt(-(f^2*sqrt(-1/f^4) + 1)/f^2)*log(sqrt(2)*(f^3*sqrt(-1/ 
f^4) + f)*sqrt(-(f^2*sqrt(-1/f^4) + 1)/f^2) + 2*sqrt(tan(f*x + e) + 1)) - 
sqrt(2)*f*sqrt(-(f^2*sqrt(-1/f^4) + 1)/f^2)*log(-sqrt(2)*(f^3*sqrt(-1/f^4) 
 + f)*sqrt(-(f^2*sqrt(-1/f^4) + 1)/f^2) + 2*sqrt(tan(f*x + e) + 1)) - sqrt 
(2)*f*sqrt((f^2*sqrt(-1/f^4) - 1)/f^2)*log(sqrt(2)*(f^3*sqrt(-1/f^4) - f)* 
sqrt((f^2*sqrt(-1/f^4) - 1)/f^2) + 2*sqrt(tan(f*x + e) + 1)) + sqrt(2)*f*s 
qrt((f^2*sqrt(-1/f^4) - 1)/f^2)*log(-sqrt(2)*(f^3*sqrt(-1/f^4) - f)*sqrt(( 
f^2*sqrt(-1/f^4) - 1)/f^2) + 2*sqrt(tan(f*x + e) + 1)) - 2*log(sqrt(tan(f* 
x + e) + 1) + 1) + 2*log(sqrt(tan(f*x + e) + 1) - 1))/f
 

Sympy [F]

\[ \int \cot (e+f x) (1+\tan (e+f x))^{3/2} \, dx=\int \left (\tan {\left (e + f x \right )} + 1\right )^{\frac {3}{2}} \cot {\left (e + f x \right )}\, dx \] Input:

integrate(cot(f*x+e)*(1+tan(f*x+e))**(3/2),x)
 

Output:

Integral((tan(e + f*x) + 1)**(3/2)*cot(e + f*x), x)
 

Maxima [F]

\[ \int \cot (e+f x) (1+\tan (e+f x))^{3/2} \, dx=\int { {\left (\tan \left (f x + e\right ) + 1\right )}^{\frac {3}{2}} \cot \left (f x + e\right ) \,d x } \] Input:

integrate(cot(f*x+e)*(1+tan(f*x+e))^(3/2),x, algorithm="maxima")
 

Output:

integrate((tan(f*x + e) + 1)^(3/2)*cot(f*x + e), x)
                                                                                    
                                                                                    
 

Giac [F(-2)]

Exception generated. \[ \int \cot (e+f x) (1+\tan (e+f x))^{3/2} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(cot(f*x+e)*(1+tan(f*x+e))^(3/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.44 \[ \int \cot (e+f x) (1+\tan (e+f x))^{3/2} \, dx=-\frac {2\,\mathrm {atanh}\left (\sqrt {\mathrm {tan}\left (e+f\,x\right )+1}\right )}{f}+\mathrm {atan}\left (f\,\sqrt {\frac {-\frac {1}{2}-\frac {1}{2}{}\mathrm {i}}{f^2}}\,\sqrt {\mathrm {tan}\left (e+f\,x\right )+1}\right )\,\sqrt {\frac {-\frac {1}{2}-\frac {1}{2}{}\mathrm {i}}{f^2}}\,2{}\mathrm {i}-\mathrm {atan}\left (f\,\sqrt {\frac {-\frac {1}{2}+\frac {1}{2}{}\mathrm {i}}{f^2}}\,\sqrt {\mathrm {tan}\left (e+f\,x\right )+1}\right )\,\sqrt {\frac {-\frac {1}{2}+\frac {1}{2}{}\mathrm {i}}{f^2}}\,2{}\mathrm {i} \] Input:

int(cot(e + f*x)*(tan(e + f*x) + 1)^(3/2),x)
 

Output:

atan(f*((- 1/2 - 1i/2)/f^2)^(1/2)*(tan(e + f*x) + 1)^(1/2))*((- 1/2 - 1i/2 
)/f^2)^(1/2)*2i - (2*atanh((tan(e + f*x) + 1)^(1/2)))/f - atan(f*((- 1/2 + 
 1i/2)/f^2)^(1/2)*(tan(e + f*x) + 1)^(1/2))*((- 1/2 + 1i/2)/f^2)^(1/2)*2i
 

Reduce [F]

\[ \int \cot (e+f x) (1+\tan (e+f x))^{3/2} \, dx=\int \sqrt {\tan \left (f x +e \right )+1}\, \cot \left (f x +e \right ) \tan \left (f x +e \right )d x +\int \sqrt {\tan \left (f x +e \right )+1}\, \cot \left (f x +e \right )d x \] Input:

int(cot(f*x+e)*(1+tan(f*x+e))^(3/2),x)
 

Output:

int(sqrt(tan(e + f*x) + 1)*cot(e + f*x)*tan(e + f*x),x) + int(sqrt(tan(e + 
 f*x) + 1)*cot(e + f*x),x)