\(\int \frac {\tan ^2(c+d x)}{(a+b \tan (c+d x))^4} \, dx\) [490]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-2)]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 169 \[ \int \frac {\tan ^2(c+d x)}{(a+b \tan (c+d x))^4} \, dx=-\frac {\left (a^4-6 a^2 b^2+b^4\right ) x}{\left (a^2+b^2\right )^4}-\frac {4 a b \left (a^2-b^2\right ) \log (a \cos (c+d x)+b \sin (c+d x))}{\left (a^2+b^2\right )^4 d}-\frac {a^2}{3 b \left (a^2+b^2\right ) d (a+b \tan (c+d x))^3}+\frac {a b}{\left (a^2+b^2\right )^2 d (a+b \tan (c+d x))^2}+\frac {b \left (3 a^2-b^2\right )}{\left (a^2+b^2\right )^3 d (a+b \tan (c+d x))} \] Output:

-(a^4-6*a^2*b^2+b^4)*x/(a^2+b^2)^4-4*a*b*(a^2-b^2)*ln(a*cos(d*x+c)+b*sin(d 
*x+c))/(a^2+b^2)^4/d-1/3*a^2/b/(a^2+b^2)/d/(a+b*tan(d*x+c))^3+a*b/(a^2+b^2 
)^2/d/(a+b*tan(d*x+c))^2+b*(3*a^2-b^2)/(a^2+b^2)^3/d/(a+b*tan(d*x+c))
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 5.34 (sec) , antiderivative size = 294, normalized size of antiderivative = 1.74 \[ \int \frac {\tan ^2(c+d x)}{(a+b \tan (c+d x))^4} \, dx=\frac {\frac {2 b^2 \tan ^3(c+d x)}{(a+b \tan (c+d x))^3}+\frac {6 a \tan (c+d x)}{(a+b \tan (c+d x))^2}-3 a \left (\frac {i \log (i-\tan (c+d x))}{(a+i b)^2}-\frac {i \log (i+\tan (c+d x))}{(a-i b)^2}-\frac {4 a b \log (a+b \tan (c+d x))}{\left (a^2+b^2\right )^2}+\frac {2 b}{\left (a^2+b^2\right ) (a+b \tan (c+d x))}-2 a \left (\frac {i \log (i-\tan (c+d x))}{(a+i b)^3}-\frac {\log (i+\tan (c+d x))}{(i a+b)^3}+\frac {b \left (\left (-6 a^2+2 b^2\right ) \log (a+b \tan (c+d x))+\frac {\left (a^2+b^2\right ) \left (5 a^2+b^2+4 a b \tan (c+d x)\right )}{(a+b \tan (c+d x))^2}\right )}{\left (a^2+b^2\right )^3}\right )\right )}{6 a \left (a^2+b^2\right ) d} \] Input:

Integrate[Tan[c + d*x]^2/(a + b*Tan[c + d*x])^4,x]
 

Output:

((2*b^2*Tan[c + d*x]^3)/(a + b*Tan[c + d*x])^3 + (6*a*Tan[c + d*x])/(a + b 
*Tan[c + d*x])^2 - 3*a*((I*Log[I - Tan[c + d*x]])/(a + I*b)^2 - (I*Log[I + 
 Tan[c + d*x]])/(a - I*b)^2 - (4*a*b*Log[a + b*Tan[c + d*x]])/(a^2 + b^2)^ 
2 + (2*b)/((a^2 + b^2)*(a + b*Tan[c + d*x])) - 2*a*((I*Log[I - Tan[c + d*x 
]])/(a + I*b)^3 - Log[I + Tan[c + d*x]]/(I*a + b)^3 + (b*((-6*a^2 + 2*b^2) 
*Log[a + b*Tan[c + d*x]] + ((a^2 + b^2)*(5*a^2 + b^2 + 4*a*b*Tan[c + d*x]) 
)/(a + b*Tan[c + d*x])^2))/(a^2 + b^2)^3)))/(6*a*(a^2 + b^2)*d)
 

Rubi [A] (verified)

Time = 1.00 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.21, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.524, Rules used = {3042, 4025, 25, 3042, 4012, 3042, 4012, 3042, 4014, 3042, 4013}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^2(c+d x)}{(a+b \tan (c+d x))^4} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (c+d x)^2}{(a+b \tan (c+d x))^4}dx\)

\(\Big \downarrow \) 4025

\(\displaystyle \frac {\int -\frac {a-b \tan (c+d x)}{(a+b \tan (c+d x))^3}dx}{a^2+b^2}-\frac {a^2}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^3}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \frac {a-b \tan (c+d x)}{(a+b \tan (c+d x))^3}dx}{a^2+b^2}-\frac {a^2}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {a-b \tan (c+d x)}{(a+b \tan (c+d x))^3}dx}{a^2+b^2}-\frac {a^2}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^3}\)

\(\Big \downarrow \) 4012

\(\displaystyle -\frac {\frac {\int \frac {a^2-2 b \tan (c+d x) a-b^2}{(a+b \tan (c+d x))^2}dx}{a^2+b^2}-\frac {a b}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}}{a^2+b^2}-\frac {a^2}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {a^2-2 b \tan (c+d x) a-b^2}{(a+b \tan (c+d x))^2}dx}{a^2+b^2}-\frac {a b}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}}{a^2+b^2}-\frac {a^2}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^3}\)

\(\Big \downarrow \) 4012

\(\displaystyle -\frac {\frac {\frac {\int \frac {a \left (a^2-3 b^2\right )-b \left (3 a^2-b^2\right ) \tan (c+d x)}{a+b \tan (c+d x)}dx}{a^2+b^2}-\frac {b \left (3 a^2-b^2\right )}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))}}{a^2+b^2}-\frac {a b}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}}{a^2+b^2}-\frac {a^2}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\frac {\int \frac {a \left (a^2-3 b^2\right )-b \left (3 a^2-b^2\right ) \tan (c+d x)}{a+b \tan (c+d x)}dx}{a^2+b^2}-\frac {b \left (3 a^2-b^2\right )}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))}}{a^2+b^2}-\frac {a b}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}}{a^2+b^2}-\frac {a^2}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^3}\)

\(\Big \downarrow \) 4014

\(\displaystyle -\frac {\frac {\frac {\frac {4 a b \left (a^2-b^2\right ) \int \frac {b-a \tan (c+d x)}{a+b \tan (c+d x)}dx}{a^2+b^2}+\frac {x \left (a^4-6 a^2 b^2+b^4\right )}{a^2+b^2}}{a^2+b^2}-\frac {b \left (3 a^2-b^2\right )}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))}}{a^2+b^2}-\frac {a b}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}}{a^2+b^2}-\frac {a^2}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\frac {\frac {4 a b \left (a^2-b^2\right ) \int \frac {b-a \tan (c+d x)}{a+b \tan (c+d x)}dx}{a^2+b^2}+\frac {x \left (a^4-6 a^2 b^2+b^4\right )}{a^2+b^2}}{a^2+b^2}-\frac {b \left (3 a^2-b^2\right )}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))}}{a^2+b^2}-\frac {a b}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}}{a^2+b^2}-\frac {a^2}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^3}\)

\(\Big \downarrow \) 4013

\(\displaystyle -\frac {a^2}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^3}-\frac {\frac {\frac {\frac {4 a b \left (a^2-b^2\right ) \log (a \cos (c+d x)+b \sin (c+d x))}{d \left (a^2+b^2\right )}+\frac {x \left (a^4-6 a^2 b^2+b^4\right )}{a^2+b^2}}{a^2+b^2}-\frac {b \left (3 a^2-b^2\right )}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))}}{a^2+b^2}-\frac {a b}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}}{a^2+b^2}\)

Input:

Int[Tan[c + d*x]^2/(a + b*Tan[c + d*x])^4,x]
 

Output:

-1/3*a^2/(b*(a^2 + b^2)*d*(a + b*Tan[c + d*x])^3) - (-((a*b)/((a^2 + b^2)* 
d*(a + b*Tan[c + d*x])^2)) + ((((a^4 - 6*a^2*b^2 + b^4)*x)/(a^2 + b^2) + ( 
4*a*b*(a^2 - b^2)*Log[a*Cos[c + d*x] + b*Sin[c + d*x]])/((a^2 + b^2)*d))/( 
a^2 + b^2) - (b*(3*a^2 - b^2))/((a^2 + b^2)*d*(a + b*Tan[c + d*x])))/(a^2 
+ b^2))/(a^2 + b^2)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4012
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(b*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/ 
(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e + f*x] 
)^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a 
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1 
]
 

rule 4013
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_) + (b_.)*tan[(e_.) + (f_.)* 
(x_)]), x_Symbol] :> Simp[(c/(b*f))*Log[RemoveContent[a*Cos[e + f*x] + b*Si 
n[e + f*x], x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[a*c + b*d, 0]
 

rule 4014
Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[(a*c + b*d)*(x/(a^2 + b^2)), x] + Simp[(b*c - a 
*d)/(a^2 + b^2)   Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && N 
eQ[a*c + b*d, 0]
 

rule 4025
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^2, x_Symbol] :> Simp[(b*c - a*d)^2*((a + b*Tan[e + f*x])^(m + 
 1)/(b*f*(m + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e 
+ f*x])^(m + 1)*Simp[a*c^2 + 2*b*c*d - a*d^2 - (b*c^2 - 2*a*c*d - b*d^2)*Ta 
n[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] 
 && LtQ[m, -1] && NeQ[a^2 + b^2, 0]
 
Maple [A] (verified)

Time = 0.84 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.12

method result size
derivativedivides \(\frac {\frac {\frac {\left (4 a^{3} b -4 a \,b^{3}\right ) \ln \left (1+\tan \left (d x +c \right )^{2}\right )}{2}+\left (-a^{4}+6 b^{2} a^{2}-b^{4}\right ) \arctan \left (\tan \left (d x +c \right )\right )}{\left (a^{2}+b^{2}\right )^{4}}-\frac {a^{2}}{3 \left (a^{2}+b^{2}\right ) b \left (a +b \tan \left (d x +c \right )\right )^{3}}+\frac {a b}{\left (a^{2}+b^{2}\right )^{2} \left (a +b \tan \left (d x +c \right )\right )^{2}}+\frac {b \left (3 a^{2}-b^{2}\right )}{\left (a^{2}+b^{2}\right )^{3} \left (a +b \tan \left (d x +c \right )\right )}-\frac {4 a b \left (a^{2}-b^{2}\right ) \ln \left (a +b \tan \left (d x +c \right )\right )}{\left (a^{2}+b^{2}\right )^{4}}}{d}\) \(190\)
default \(\frac {\frac {\frac {\left (4 a^{3} b -4 a \,b^{3}\right ) \ln \left (1+\tan \left (d x +c \right )^{2}\right )}{2}+\left (-a^{4}+6 b^{2} a^{2}-b^{4}\right ) \arctan \left (\tan \left (d x +c \right )\right )}{\left (a^{2}+b^{2}\right )^{4}}-\frac {a^{2}}{3 \left (a^{2}+b^{2}\right ) b \left (a +b \tan \left (d x +c \right )\right )^{3}}+\frac {a b}{\left (a^{2}+b^{2}\right )^{2} \left (a +b \tan \left (d x +c \right )\right )^{2}}+\frac {b \left (3 a^{2}-b^{2}\right )}{\left (a^{2}+b^{2}\right )^{3} \left (a +b \tan \left (d x +c \right )\right )}-\frac {4 a b \left (a^{2}-b^{2}\right ) \ln \left (a +b \tan \left (d x +c \right )\right )}{\left (a^{2}+b^{2}\right )^{4}}}{d}\) \(190\)
norman \(\frac {\frac {\left (3 a^{2} b^{4}-b^{6}\right ) \tan \left (d x +c \right )^{2}}{b \left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right ) d}+\frac {a \left (7 a^{2} b^{4}-b^{6}\right ) \tan \left (d x +c \right )}{b^{2} \left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right ) d}+\frac {a^{2} \left (-a^{4} b^{2}+10 a^{2} b^{4}-b^{6}\right )}{3 b^{3} \left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right ) d}-\frac {\left (a^{4}-6 b^{2} a^{2}+b^{4}\right ) a^{3} x}{\left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right ) \left (a^{2}+b^{2}\right )}-\frac {b^{3} \left (a^{4}-6 b^{2} a^{2}+b^{4}\right ) x \tan \left (d x +c \right )^{3}}{\left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right ) \left (a^{2}+b^{2}\right )}-\frac {3 b \left (a^{4}-6 b^{2} a^{2}+b^{4}\right ) a^{2} x \tan \left (d x +c \right )}{\left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right ) \left (a^{2}+b^{2}\right )}-\frac {3 b^{2} \left (a^{4}-6 b^{2} a^{2}+b^{4}\right ) a x \tan \left (d x +c \right )^{2}}{\left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right ) \left (a^{2}+b^{2}\right )}}{\left (a +b \tan \left (d x +c \right )\right )^{3}}+\frac {2 a b \left (a^{2}-b^{2}\right ) \ln \left (1+\tan \left (d x +c \right )^{2}\right )}{d \left (a^{8}+4 a^{6} b^{2}+6 a^{4} b^{4}+4 a^{2} b^{6}+b^{8}\right )}-\frac {4 a b \left (a^{2}-b^{2}\right ) \ln \left (a +b \tan \left (d x +c \right )\right )}{d \left (a^{8}+4 a^{6} b^{2}+6 a^{4} b^{4}+4 a^{2} b^{6}+b^{8}\right )}\) \(545\)
risch \(\frac {x}{4 i a^{3} b -4 i a \,b^{3}-a^{4}+6 b^{2} a^{2}-b^{4}}+\frac {8 i a^{3} b x}{a^{8}+4 a^{6} b^{2}+6 a^{4} b^{4}+4 a^{2} b^{6}+b^{8}}-\frac {8 i a \,b^{3} x}{a^{8}+4 a^{6} b^{2}+6 a^{4} b^{4}+4 a^{2} b^{6}+b^{8}}+\frac {8 i a^{3} b c}{d \left (a^{8}+4 a^{6} b^{2}+6 a^{4} b^{4}+4 a^{2} b^{6}+b^{8}\right )}-\frac {8 i a \,b^{3} c}{d \left (a^{8}+4 a^{6} b^{2}+6 a^{4} b^{4}+4 a^{2} b^{6}+b^{8}\right )}+\frac {2 i \left (6 i a^{5} b \,{\mathrm e}^{2 i \left (d x +c \right )}+3 a^{6} {\mathrm e}^{4 i \left (d x +c \right )}-9 a^{4} b^{2} {\mathrm e}^{4 i \left (d x +c \right )}+9 a^{2} b^{4} {\mathrm e}^{4 i \left (d x +c \right )}-3 b^{6} {\mathrm e}^{4 i \left (d x +c \right )}+6 i a \,b^{5}+6 i a^{5} b +6 a^{6} {\mathrm e}^{2 i \left (d x +c \right )}-24 a^{4} b^{2} {\mathrm e}^{2 i \left (d x +c \right )}-24 a^{2} b^{4} {\mathrm e}^{2 i \left (d x +c \right )}+6 b^{6} {\mathrm e}^{2 i \left (d x +c \right )}-32 i a^{3} b^{3}+24 i a^{3} b^{3} {\mathrm e}^{4 i \left (d x +c \right )}-6 i a \,b^{5} {\mathrm e}^{2 i \left (d x +c \right )}+3 a^{6}-19 a^{4} b^{2}+19 a^{2} b^{4}-3 b^{6}\right )}{3 \left (i b +a \right )^{3} \left (-i b \,{\mathrm e}^{2 i \left (d x +c \right )}+a \,{\mathrm e}^{2 i \left (d x +c \right )}+i b +a \right )^{3} d \left (-i b +a \right )^{4}}-\frac {4 a^{3} b \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-\frac {i b +a}{i b -a}\right )}{\left (a^{8}+4 a^{6} b^{2}+6 a^{4} b^{4}+4 a^{2} b^{6}+b^{8}\right ) d}+\frac {4 a \,b^{3} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-\frac {i b +a}{i b -a}\right )}{d \left (a^{8}+4 a^{6} b^{2}+6 a^{4} b^{4}+4 a^{2} b^{6}+b^{8}\right )}\) \(629\)
parallelrisch \(\frac {-3 x \tan \left (d x +c \right )^{3} a^{4} b^{6} d +18 x \tan \left (d x +c \right )^{3} a^{2} b^{8} d -9 x \tan \left (d x +c \right )^{2} a^{5} b^{5} d -9 x \tan \left (d x +c \right ) a^{6} b^{4} d +54 x \tan \left (d x +c \right )^{2} a^{3} b^{7} d -9 x \tan \left (d x +c \right )^{2} a \,b^{9} d +54 x \tan \left (d x +c \right ) a^{4} b^{6} d -9 x \tan \left (d x +c \right ) a^{2} b^{8} d -3 x \tan \left (d x +c \right )^{3} b^{10} d -3 x \,a^{7} b^{3} d +6 \ln \left (1+\tan \left (d x +c \right )^{2}\right ) \tan \left (d x +c \right )^{3} a^{3} b^{7}-6 \ln \left (1+\tan \left (d x +c \right )^{2}\right ) \tan \left (d x +c \right )^{3} a \,b^{9}-12 \ln \left (a +b \tan \left (d x +c \right )\right ) \tan \left (d x +c \right )^{3} a^{3} b^{7}+12 \ln \left (a +b \tan \left (d x +c \right )\right ) \tan \left (d x +c \right )^{3} a \,b^{9}+18 \ln \left (1+\tan \left (d x +c \right )^{2}\right ) \tan \left (d x +c \right )^{2} a^{4} b^{6}-a^{8} b^{2}+36 \ln \left (a +b \tan \left (d x +c \right )\right ) \tan \left (d x +c \right )^{2} a^{2} b^{8}+18 \ln \left (1+\tan \left (d x +c \right )^{2}\right ) \tan \left (d x +c \right ) a^{5} b^{5}+36 \ln \left (a +b \tan \left (d x +c \right )\right ) \tan \left (d x +c \right ) a^{3} b^{7}+9 a^{4} b^{6}+6 \ln \left (1+\tan \left (d x +c \right )^{2}\right ) a^{6} b^{4}-3 \tan \left (d x +c \right )^{2} b^{10}-6 \ln \left (1+\tan \left (d x +c \right )^{2}\right ) a^{4} b^{6}-12 \ln \left (a +b \tan \left (d x +c \right )\right ) a^{6} b^{4}+21 \tan \left (d x +c \right ) a^{5} b^{5}+18 \tan \left (d x +c \right ) a^{3} b^{7}+6 \tan \left (d x +c \right )^{2} a^{2} b^{8}+9 \tan \left (d x +c \right )^{2} a^{4} b^{6}+12 \ln \left (a +b \tan \left (d x +c \right )\right ) a^{4} b^{6}+9 a^{6} b^{4}+18 x \,a^{5} b^{5} d -3 x \,a^{3} b^{7} d -18 \ln \left (1+\tan \left (d x +c \right )^{2}\right ) \tan \left (d x +c \right )^{2} a^{2} b^{8}-36 \ln \left (a +b \tan \left (d x +c \right )\right ) \tan \left (d x +c \right )^{2} a^{4} b^{6}-18 \ln \left (1+\tan \left (d x +c \right )^{2}\right ) \tan \left (d x +c \right ) a^{3} b^{7}-36 \ln \left (a +b \tan \left (d x +c \right )\right ) \tan \left (d x +c \right ) a^{5} b^{5}-a^{2} b^{8}-3 \tan \left (d x +c \right ) a \,b^{9}}{3 \left (a +b \tan \left (d x +c \right )\right )^{3} \left (a^{8}+4 a^{6} b^{2}+6 a^{4} b^{4}+4 a^{2} b^{6}+b^{8}\right ) b^{3} d}\) \(741\)

Input:

int(tan(d*x+c)^2/(a+b*tan(d*x+c))^4,x,method=_RETURNVERBOSE)
 

Output:

1/d*(1/(a^2+b^2)^4*(1/2*(4*a^3*b-4*a*b^3)*ln(1+tan(d*x+c)^2)+(-a^4+6*a^2*b 
^2-b^4)*arctan(tan(d*x+c)))-1/3*a^2/(a^2+b^2)/b/(a+b*tan(d*x+c))^3+a*b/(a^ 
2+b^2)^2/(a+b*tan(d*x+c))^2+b*(3*a^2-b^2)/(a^2+b^2)^3/(a+b*tan(d*x+c))-4*a 
*b*(a^2-b^2)/(a^2+b^2)^4*ln(a+b*tan(d*x+c)))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 531 vs. \(2 (167) = 334\).

Time = 0.11 (sec) , antiderivative size = 531, normalized size of antiderivative = 3.14 \[ \int \frac {\tan ^2(c+d x)}{(a+b \tan (c+d x))^4} \, dx=-\frac {6 \, a^{6} b - 15 \, a^{4} b^{3} + a^{2} b^{5} - {\left (a^{5} b^{2} - 15 \, a^{3} b^{4} + 6 \, a b^{6} - 3 \, {\left (a^{4} b^{3} - 6 \, a^{2} b^{5} + b^{7}\right )} d x\right )} \tan \left (d x + c\right )^{3} + 3 \, {\left (a^{7} - 6 \, a^{5} b^{2} + a^{3} b^{4}\right )} d x - 3 \, {\left (a^{6} b - 12 \, a^{4} b^{3} + 8 \, a^{2} b^{5} - b^{7} - 3 \, {\left (a^{5} b^{2} - 6 \, a^{3} b^{4} + a b^{6}\right )} d x\right )} \tan \left (d x + c\right )^{2} + 6 \, {\left (a^{6} b - a^{4} b^{3} + {\left (a^{3} b^{4} - a b^{6}\right )} \tan \left (d x + c\right )^{3} + 3 \, {\left (a^{4} b^{3} - a^{2} b^{5}\right )} \tan \left (d x + c\right )^{2} + 3 \, {\left (a^{5} b^{2} - a^{3} b^{4}\right )} \tan \left (d x + c\right )\right )} \log \left (\frac {b^{2} \tan \left (d x + c\right )^{2} + 2 \, a b \tan \left (d x + c\right ) + a^{2}}{\tan \left (d x + c\right )^{2} + 1}\right ) - 3 \, {\left (a^{7} - 8 \, a^{5} b^{2} + 12 \, a^{3} b^{4} - a b^{6} - 3 \, {\left (a^{6} b - 6 \, a^{4} b^{3} + a^{2} b^{5}\right )} d x\right )} \tan \left (d x + c\right )}{3 \, {\left ({\left (a^{8} b^{3} + 4 \, a^{6} b^{5} + 6 \, a^{4} b^{7} + 4 \, a^{2} b^{9} + b^{11}\right )} d \tan \left (d x + c\right )^{3} + 3 \, {\left (a^{9} b^{2} + 4 \, a^{7} b^{4} + 6 \, a^{5} b^{6} + 4 \, a^{3} b^{8} + a b^{10}\right )} d \tan \left (d x + c\right )^{2} + 3 \, {\left (a^{10} b + 4 \, a^{8} b^{3} + 6 \, a^{6} b^{5} + 4 \, a^{4} b^{7} + a^{2} b^{9}\right )} d \tan \left (d x + c\right ) + {\left (a^{11} + 4 \, a^{9} b^{2} + 6 \, a^{7} b^{4} + 4 \, a^{5} b^{6} + a^{3} b^{8}\right )} d\right )}} \] Input:

integrate(tan(d*x+c)^2/(a+b*tan(d*x+c))^4,x, algorithm="fricas")
 

Output:

-1/3*(6*a^6*b - 15*a^4*b^3 + a^2*b^5 - (a^5*b^2 - 15*a^3*b^4 + 6*a*b^6 - 3 
*(a^4*b^3 - 6*a^2*b^5 + b^7)*d*x)*tan(d*x + c)^3 + 3*(a^7 - 6*a^5*b^2 + a^ 
3*b^4)*d*x - 3*(a^6*b - 12*a^4*b^3 + 8*a^2*b^5 - b^7 - 3*(a^5*b^2 - 6*a^3* 
b^4 + a*b^6)*d*x)*tan(d*x + c)^2 + 6*(a^6*b - a^4*b^3 + (a^3*b^4 - a*b^6)* 
tan(d*x + c)^3 + 3*(a^4*b^3 - a^2*b^5)*tan(d*x + c)^2 + 3*(a^5*b^2 - a^3*b 
^4)*tan(d*x + c))*log((b^2*tan(d*x + c)^2 + 2*a*b*tan(d*x + c) + a^2)/(tan 
(d*x + c)^2 + 1)) - 3*(a^7 - 8*a^5*b^2 + 12*a^3*b^4 - a*b^6 - 3*(a^6*b - 6 
*a^4*b^3 + a^2*b^5)*d*x)*tan(d*x + c))/((a^8*b^3 + 4*a^6*b^5 + 6*a^4*b^7 + 
 4*a^2*b^9 + b^11)*d*tan(d*x + c)^3 + 3*(a^9*b^2 + 4*a^7*b^4 + 6*a^5*b^6 + 
 4*a^3*b^8 + a*b^10)*d*tan(d*x + c)^2 + 3*(a^10*b + 4*a^8*b^3 + 6*a^6*b^5 
+ 4*a^4*b^7 + a^2*b^9)*d*tan(d*x + c) + (a^11 + 4*a^9*b^2 + 6*a^7*b^4 + 4* 
a^5*b^6 + a^3*b^8)*d)
 

Sympy [F(-2)]

Exception generated. \[ \int \frac {\tan ^2(c+d x)}{(a+b \tan (c+d x))^4} \, dx=\text {Exception raised: AttributeError} \] Input:

integrate(tan(d*x+c)**2/(a+b*tan(d*x+c))**4,x)
 

Output:

Exception raised: AttributeError >> 'NoneType' object has no attribute 'pr 
imitive'
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 389 vs. \(2 (167) = 334\).

Time = 0.11 (sec) , antiderivative size = 389, normalized size of antiderivative = 2.30 \[ \int \frac {\tan ^2(c+d x)}{(a+b \tan (c+d x))^4} \, dx=-\frac {\frac {3 \, {\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )} {\left (d x + c\right )}}{a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}} + \frac {12 \, {\left (a^{3} b - a b^{3}\right )} \log \left (b \tan \left (d x + c\right ) + a\right )}{a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}} - \frac {6 \, {\left (a^{3} b - a b^{3}\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right )}{a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}} + \frac {a^{6} - 10 \, a^{4} b^{2} + a^{2} b^{4} - 3 \, {\left (3 \, a^{2} b^{4} - b^{6}\right )} \tan \left (d x + c\right )^{2} - 3 \, {\left (7 \, a^{3} b^{3} - a b^{5}\right )} \tan \left (d x + c\right )}{a^{9} b + 3 \, a^{7} b^{3} + 3 \, a^{5} b^{5} + a^{3} b^{7} + {\left (a^{6} b^{4} + 3 \, a^{4} b^{6} + 3 \, a^{2} b^{8} + b^{10}\right )} \tan \left (d x + c\right )^{3} + 3 \, {\left (a^{7} b^{3} + 3 \, a^{5} b^{5} + 3 \, a^{3} b^{7} + a b^{9}\right )} \tan \left (d x + c\right )^{2} + 3 \, {\left (a^{8} b^{2} + 3 \, a^{6} b^{4} + 3 \, a^{4} b^{6} + a^{2} b^{8}\right )} \tan \left (d x + c\right )}}{3 \, d} \] Input:

integrate(tan(d*x+c)^2/(a+b*tan(d*x+c))^4,x, algorithm="maxima")
 

Output:

-1/3*(3*(a^4 - 6*a^2*b^2 + b^4)*(d*x + c)/(a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4 
*a^2*b^6 + b^8) + 12*(a^3*b - a*b^3)*log(b*tan(d*x + c) + a)/(a^8 + 4*a^6* 
b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8) - 6*(a^3*b - a*b^3)*log(tan(d*x + c)^2 
+ 1)/(a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8) + (a^6 - 10*a^4*b^2 + 
 a^2*b^4 - 3*(3*a^2*b^4 - b^6)*tan(d*x + c)^2 - 3*(7*a^3*b^3 - a*b^5)*tan( 
d*x + c))/(a^9*b + 3*a^7*b^3 + 3*a^5*b^5 + a^3*b^7 + (a^6*b^4 + 3*a^4*b^6 
+ 3*a^2*b^8 + b^10)*tan(d*x + c)^3 + 3*(a^7*b^3 + 3*a^5*b^5 + 3*a^3*b^7 + 
a*b^9)*tan(d*x + c)^2 + 3*(a^8*b^2 + 3*a^6*b^4 + 3*a^4*b^6 + a^2*b^8)*tan( 
d*x + c)))/d
 

Giac [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 316, normalized size of antiderivative = 1.87 \[ \int \frac {\tan ^2(c+d x)}{(a+b \tan (c+d x))^4} \, dx=-\frac {{\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )} {\left (d x + c\right )}}{a^{8} d + 4 \, a^{6} b^{2} d + 6 \, a^{4} b^{4} d + 4 \, a^{2} b^{6} d + b^{8} d} + \frac {2 \, {\left (a^{3} b - a b^{3}\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right )}{a^{8} d + 4 \, a^{6} b^{2} d + 6 \, a^{4} b^{4} d + 4 \, a^{2} b^{6} d + b^{8} d} - \frac {4 \, {\left (a^{3} b^{2} - a b^{4}\right )} \log \left ({\left | b \tan \left (d x + c\right ) + a \right |}\right )}{a^{8} b d + 4 \, a^{6} b^{3} d + 6 \, a^{4} b^{5} d + 4 \, a^{2} b^{7} d + b^{9} d} - \frac {a^{8} - 9 \, a^{6} b^{2} - 9 \, a^{4} b^{4} + a^{2} b^{6} - 3 \, {\left (3 \, a^{4} b^{4} + 2 \, a^{2} b^{6} - b^{8}\right )} \tan \left (d x + c\right )^{2} - 3 \, {\left (7 \, a^{5} b^{3} + 6 \, a^{3} b^{5} - a b^{7}\right )} \tan \left (d x + c\right )}{3 \, {\left (a^{2} + b^{2}\right )}^{4} {\left (b \tan \left (d x + c\right ) + a\right )}^{3} b d} \] Input:

integrate(tan(d*x+c)^2/(a+b*tan(d*x+c))^4,x, algorithm="giac")
 

Output:

-(a^4 - 6*a^2*b^2 + b^4)*(d*x + c)/(a^8*d + 4*a^6*b^2*d + 6*a^4*b^4*d + 4* 
a^2*b^6*d + b^8*d) + 2*(a^3*b - a*b^3)*log(tan(d*x + c)^2 + 1)/(a^8*d + 4* 
a^6*b^2*d + 6*a^4*b^4*d + 4*a^2*b^6*d + b^8*d) - 4*(a^3*b^2 - a*b^4)*log(a 
bs(b*tan(d*x + c) + a))/(a^8*b*d + 4*a^6*b^3*d + 6*a^4*b^5*d + 4*a^2*b^7*d 
 + b^9*d) - 1/3*(a^8 - 9*a^6*b^2 - 9*a^4*b^4 + a^2*b^6 - 3*(3*a^4*b^4 + 2* 
a^2*b^6 - b^8)*tan(d*x + c)^2 - 3*(7*a^5*b^3 + 6*a^3*b^5 - a*b^7)*tan(d*x 
+ c))/((a^2 + b^2)^4*(b*tan(d*x + c) + a)^3*b*d)
 

Mupad [B] (verification not implemented)

Time = 1.35 (sec) , antiderivative size = 326, normalized size of antiderivative = 1.93 \[ \int \frac {\tan ^2(c+d x)}{(a+b \tan (c+d x))^4} \, dx=-\frac {\frac {a^6-10\,a^4\,b^2+a^2\,b^4}{3\,b\,\left (a^6+3\,a^4\,b^2+3\,a^2\,b^4+b^6\right )}+\frac {{\mathrm {tan}\left (c+d\,x\right )}^2\,\left (b^5-3\,a^2\,b^3\right )}{a^6+3\,a^4\,b^2+3\,a^2\,b^4+b^6}+\frac {\mathrm {tan}\left (c+d\,x\right )\,\left (a\,b^4-7\,a^3\,b^2\right )}{a^6+3\,a^4\,b^2+3\,a^2\,b^4+b^6}}{d\,\left (a^3+3\,a^2\,b\,\mathrm {tan}\left (c+d\,x\right )+3\,a\,b^2\,{\mathrm {tan}\left (c+d\,x\right )}^2+b^3\,{\mathrm {tan}\left (c+d\,x\right )}^3\right )}-\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )-\mathrm {i}\right )}{2\,d\,\left (a^4\,1{}\mathrm {i}-4\,a^3\,b-a^2\,b^2\,6{}\mathrm {i}+4\,a\,b^3+b^4\,1{}\mathrm {i}\right )}-\frac {4\,a\,b\,\ln \left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )\,\left (a^2-b^2\right )}{d\,{\left (a^2+b^2\right )}^4}-\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )+1{}\mathrm {i}\right )\,1{}\mathrm {i}}{2\,d\,\left (a^4-a^3\,b\,4{}\mathrm {i}-6\,a^2\,b^2+a\,b^3\,4{}\mathrm {i}+b^4\right )} \] Input:

int(tan(c + d*x)^2/(a + b*tan(c + d*x))^4,x)
                                                                                    
                                                                                    
 

Output:

- ((a^6 + a^2*b^4 - 10*a^4*b^2)/(3*b*(a^6 + b^6 + 3*a^2*b^4 + 3*a^4*b^2)) 
+ (tan(c + d*x)^2*(b^5 - 3*a^2*b^3))/(a^6 + b^6 + 3*a^2*b^4 + 3*a^4*b^2) + 
 (tan(c + d*x)*(a*b^4 - 7*a^3*b^2))/(a^6 + b^6 + 3*a^2*b^4 + 3*a^4*b^2))/( 
d*(a^3 + b^3*tan(c + d*x)^3 + 3*a*b^2*tan(c + d*x)^2 + 3*a^2*b*tan(c + d*x 
))) - log(tan(c + d*x) - 1i)/(2*d*(4*a*b^3 - 4*a^3*b + a^4*1i + b^4*1i - a 
^2*b^2*6i)) - (log(tan(c + d*x) + 1i)*1i)/(2*d*(a*b^3*4i - a^3*b*4i + a^4 
+ b^4 - 6*a^2*b^2)) - (4*a*b*log(a + b*tan(c + d*x))*(a^2 - b^2))/(d*(a^2 
+ b^2)^4)
 

Reduce [B] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 937, normalized size of antiderivative = 5.54 \[ \int \frac {\tan ^2(c+d x)}{(a+b \tan (c+d x))^4} \, dx =\text {Too large to display} \] Input:

int(tan(d*x+c)^2/(a+b*tan(d*x+c))^4,x)
 

Output:

(6*log(tan(c + d*x)**2 + 1)*tan(c + d*x)**3*a**4*b**5 - 6*log(tan(c + d*x) 
**2 + 1)*tan(c + d*x)**3*a**2*b**7 + 18*log(tan(c + d*x)**2 + 1)*tan(c + d 
*x)**2*a**5*b**4 - 18*log(tan(c + d*x)**2 + 1)*tan(c + d*x)**2*a**3*b**6 + 
 18*log(tan(c + d*x)**2 + 1)*tan(c + d*x)*a**6*b**3 - 18*log(tan(c + d*x)* 
*2 + 1)*tan(c + d*x)*a**4*b**5 + 6*log(tan(c + d*x)**2 + 1)*a**7*b**2 - 6* 
log(tan(c + d*x)**2 + 1)*a**5*b**4 - 12*log(tan(c + d*x)*b + a)*tan(c + d* 
x)**3*a**4*b**5 + 12*log(tan(c + d*x)*b + a)*tan(c + d*x)**3*a**2*b**7 - 3 
6*log(tan(c + d*x)*b + a)*tan(c + d*x)**2*a**5*b**4 + 36*log(tan(c + d*x)* 
b + a)*tan(c + d*x)**2*a**3*b**6 - 36*log(tan(c + d*x)*b + a)*tan(c + d*x) 
*a**6*b**3 + 36*log(tan(c + d*x)*b + a)*tan(c + d*x)*a**4*b**5 - 12*log(ta 
n(c + d*x)*b + a)*a**7*b**2 + 12*log(tan(c + d*x)*b + a)*a**5*b**4 - 3*tan 
(c + d*x)**3*a**5*b**4*d*x - 3*tan(c + d*x)**3*a**4*b**5 + 18*tan(c + d*x) 
**3*a**3*b**6*d*x - 2*tan(c + d*x)**3*a**2*b**7 - 3*tan(c + d*x)**3*a*b**8 
*d*x + tan(c + d*x)**3*b**9 - 9*tan(c + d*x)**2*a**6*b**3*d*x + 54*tan(c + 
 d*x)**2*a**4*b**5*d*x - 9*tan(c + d*x)**2*a**2*b**7*d*x - 9*tan(c + d*x)* 
a**7*b**2*d*x + 12*tan(c + d*x)*a**6*b**3 + 54*tan(c + d*x)*a**5*b**4*d*x 
+ 12*tan(c + d*x)*a**4*b**5 - 9*tan(c + d*x)*a**3*b**6*d*x - a**9 - 3*a**8 
*b*d*x + 6*a**7*b**2 + 18*a**6*b**3*d*x + 7*a**5*b**4 - 3*a**4*b**5*d*x)/( 
3*a*b*d*(tan(c + d*x)**3*a**8*b**3 + 4*tan(c + d*x)**3*a**6*b**5 + 6*tan(c 
 + d*x)**3*a**4*b**7 + 4*tan(c + d*x)**3*a**2*b**9 + tan(c + d*x)**3*b*...