\(\int (a+b \tan (c+d x))^{3/2} \, dx\) [515]

Optimal result
Mathematica [A] (verified)
Rubi [A] (warning: unable to verify)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 14, antiderivative size = 111 \[ \int (a+b \tan (c+d x))^{3/2} \, dx=-\frac {i (a-i b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d}+\frac {i (a+i b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d}+\frac {2 b \sqrt {a+b \tan (c+d x)}}{d} \] Output:

-I*(a-I*b)^(3/2)*arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/d+I*(a+I*b) 
^(3/2)*arctanh((a+b*tan(d*x+c))^(1/2)/(a+I*b)^(1/2))/d+2*b*(a+b*tan(d*x+c) 
)^(1/2)/d
 

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.95 \[ \int (a+b \tan (c+d x))^{3/2} \, dx=\frac {-i (a-i b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )+i (a+i b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )+2 b \sqrt {a+b \tan (c+d x)}}{d} \] Input:

Integrate[(a + b*Tan[c + d*x])^(3/2),x]
 

Output:

((-I)*(a - I*b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]] + I* 
(a + I*b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]] + 2*b*Sqrt 
[a + b*Tan[c + d*x]])/d
 

Rubi [A] (warning: unable to verify)

Time = 0.55 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.80, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.643, Rules used = {3042, 3963, 3042, 4022, 3042, 4020, 25, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a+b \tan (c+d x))^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (a+b \tan (c+d x))^{3/2}dx\)

\(\Big \downarrow \) 3963

\(\displaystyle \int \frac {a^2+2 b \tan (c+d x) a-b^2}{\sqrt {a+b \tan (c+d x)}}dx+\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a^2+2 b \tan (c+d x) a-b^2}{\sqrt {a+b \tan (c+d x)}}dx+\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}\)

\(\Big \downarrow \) 4022

\(\displaystyle \frac {1}{2} (a-i b)^2 \int \frac {i \tan (c+d x)+1}{\sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} (a+i b)^2 \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} (a-i b)^2 \int \frac {i \tan (c+d x)+1}{\sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} (a+i b)^2 \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}\)

\(\Big \downarrow \) 4020

\(\displaystyle \frac {i (a-i b)^2 \int -\frac {1}{(1-i \tan (c+d x)) \sqrt {a+b \tan (c+d x)}}d(i \tan (c+d x))}{2 d}-\frac {i (a+i b)^2 \int -\frac {1}{(i \tan (c+d x)+1) \sqrt {a+b \tan (c+d x)}}d(-i \tan (c+d x))}{2 d}+\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {i (a-i b)^2 \int \frac {1}{(1-i \tan (c+d x)) \sqrt {a+b \tan (c+d x)}}d(i \tan (c+d x))}{2 d}+\frac {i (a+i b)^2 \int \frac {1}{(i \tan (c+d x)+1) \sqrt {a+b \tan (c+d x)}}d(-i \tan (c+d x))}{2 d}+\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {(a-i b)^2 \int \frac {1}{\frac {i \tan ^2(c+d x)}{b}+\frac {i a}{b}+1}d\sqrt {a+b \tan (c+d x)}}{b d}+\frac {(a+i b)^2 \int \frac {1}{-\frac {i \tan ^2(c+d x)}{b}-\frac {i a}{b}+1}d\sqrt {a+b \tan (c+d x)}}{b d}+\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {(a-i b)^{3/2} \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d}+\frac {(a+i b)^{3/2} \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d}+\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}\)

Input:

Int[(a + b*Tan[c + d*x])^(3/2),x]
 

Output:

((a - I*b)^(3/2)*ArcTan[Tan[c + d*x]/Sqrt[a - I*b]])/d + ((a + I*b)^(3/2)* 
ArcTan[Tan[c + d*x]/Sqrt[a + I*b]])/d + (2*b*Sqrt[a + b*Tan[c + d*x]])/d
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3963
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((a + 
b*Tan[c + d*x])^(n - 1)/(d*(n - 1))), x] + Int[(a^2 - b^2 + 2*a*b*Tan[c + d 
*x])*(a + b*Tan[c + d*x])^(n - 2), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 
+ b^2, 0] && GtQ[n, 1]
 

rule 4020
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[c*(d/f)   Subst[Int[(a + (b/d)*x)^m/(d^2 + 
c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]
 

rule 4022
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(c + I*d)/2   Int[(a + b*Tan[e + f*x])^m*( 
1 - I*Tan[e + f*x]), x], x] + Simp[(c - I*d)/2   Int[(a + b*Tan[e + f*x])^m 
*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c 
 - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(821\) vs. \(2(91)=182\).

Time = 0.17 (sec) , antiderivative size = 822, normalized size of antiderivative = 7.41

method result size
derivativedivides \(\frac {2 b \sqrt {a +b \tan \left (d x +c \right )}}{d}-\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {a^{2}+b^{2}}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d b}+\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{2}}{4 d b}-\frac {b \ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d}-\frac {b \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) \sqrt {a^{2}+b^{2}}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {2 b \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {a^{2}+b^{2}}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d b}-\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{2}}{4 d b}+\frac {b \ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d}+\frac {b \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) \sqrt {a^{2}+b^{2}}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {2 b \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\) \(822\)
default \(\frac {2 b \sqrt {a +b \tan \left (d x +c \right )}}{d}-\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {a^{2}+b^{2}}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d b}+\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{2}}{4 d b}-\frac {b \ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d}-\frac {b \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) \sqrt {a^{2}+b^{2}}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {2 b \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {a^{2}+b^{2}}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d b}-\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{2}}{4 d b}+\frac {b \ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d}+\frac {b \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) \sqrt {a^{2}+b^{2}}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {2 b \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\) \(822\)

Input:

int((a+b*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

2*b*(a+b*tan(d*x+c))^(1/2)/d-1/4/d/b*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1 
/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(a^2+b^2)^(1/2)*(2*(a^2 
+b^2)^(1/2)+2*a)^(1/2)*a+1/4/d/b*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)* 
(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/ 
2)*a^2-1/4/d*b*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2) 
+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-1/d*b/(2*(a^2+b 
^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2 
*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*(a^2+b^2)^(1/2)+2/d*b/(2*(a^2+b^ 
2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2* 
a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a+1/4/d/b*ln((a+b*tan(d*x+c))^(1/ 
2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(a^2+b^2) 
^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a-1/4/d/b*ln((a+b*tan(d*x+c))^(1/2)*( 
2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^ 
(1/2)+2*a)^(1/2)*a^2+1/4/d*b*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+ 
2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+1 
/d*b/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2 
*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*(a^2+b^2)^(1/2)-2/ 
d*b/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2* 
(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 767 vs. \(2 (85) = 170\).

Time = 0.10 (sec) , antiderivative size = 767, normalized size of antiderivative = 6.91 \[ \int (a+b \tan (c+d x))^{3/2} \, dx=\frac {d \sqrt {-\frac {a^{3} - 3 \, a b^{2} + d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}} \log \left (-{\left (3 \, a^{4} b + 2 \, a^{2} b^{3} - b^{5}\right )} \sqrt {b \tan \left (d x + c\right ) + a} + {\left (a d^{3} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}} + {\left (3 \, a^{2} b^{2} - b^{4}\right )} d\right )} \sqrt {-\frac {a^{3} - 3 \, a b^{2} + d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}}\right ) - d \sqrt {-\frac {a^{3} - 3 \, a b^{2} + d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}} \log \left (-{\left (3 \, a^{4} b + 2 \, a^{2} b^{3} - b^{5}\right )} \sqrt {b \tan \left (d x + c\right ) + a} - {\left (a d^{3} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}} + {\left (3 \, a^{2} b^{2} - b^{4}\right )} d\right )} \sqrt {-\frac {a^{3} - 3 \, a b^{2} + d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}}\right ) - d \sqrt {-\frac {a^{3} - 3 \, a b^{2} - d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}} \log \left (-{\left (3 \, a^{4} b + 2 \, a^{2} b^{3} - b^{5}\right )} \sqrt {b \tan \left (d x + c\right ) + a} + {\left (a d^{3} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}} - {\left (3 \, a^{2} b^{2} - b^{4}\right )} d\right )} \sqrt {-\frac {a^{3} - 3 \, a b^{2} - d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}}\right ) + d \sqrt {-\frac {a^{3} - 3 \, a b^{2} - d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}} \log \left (-{\left (3 \, a^{4} b + 2 \, a^{2} b^{3} - b^{5}\right )} \sqrt {b \tan \left (d x + c\right ) + a} - {\left (a d^{3} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}} - {\left (3 \, a^{2} b^{2} - b^{4}\right )} d\right )} \sqrt {-\frac {a^{3} - 3 \, a b^{2} - d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}}\right ) + 4 \, \sqrt {b \tan \left (d x + c\right ) + a} b}{2 \, d} \] Input:

integrate((a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")
 

Output:

1/2*(d*sqrt(-(a^3 - 3*a*b^2 + d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4) 
)/d^2)*log(-(3*a^4*b + 2*a^2*b^3 - b^5)*sqrt(b*tan(d*x + c) + a) + (a*d^3* 
sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4) + (3*a^2*b^2 - b^4)*d)*sqrt(-(a^3 
 - 3*a*b^2 + d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4))/d^2)) - d*sqrt( 
-(a^3 - 3*a*b^2 + d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4))/d^2)*log(- 
(3*a^4*b + 2*a^2*b^3 - b^5)*sqrt(b*tan(d*x + c) + a) - (a*d^3*sqrt(-(9*a^4 
*b^2 - 6*a^2*b^4 + b^6)/d^4) + (3*a^2*b^2 - b^4)*d)*sqrt(-(a^3 - 3*a*b^2 + 
 d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4))/d^2)) - d*sqrt(-(a^3 - 3*a* 
b^2 - d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4))/d^2)*log(-(3*a^4*b + 2 
*a^2*b^3 - b^5)*sqrt(b*tan(d*x + c) + a) + (a*d^3*sqrt(-(9*a^4*b^2 - 6*a^2 
*b^4 + b^6)/d^4) - (3*a^2*b^2 - b^4)*d)*sqrt(-(a^3 - 3*a*b^2 - d^2*sqrt(-( 
9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4))/d^2)) + d*sqrt(-(a^3 - 3*a*b^2 - d^2*sq 
rt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4))/d^2)*log(-(3*a^4*b + 2*a^2*b^3 - b 
^5)*sqrt(b*tan(d*x + c) + a) - (a*d^3*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/ 
d^4) - (3*a^2*b^2 - b^4)*d)*sqrt(-(a^3 - 3*a*b^2 - d^2*sqrt(-(9*a^4*b^2 - 
6*a^2*b^4 + b^6)/d^4))/d^2)) + 4*sqrt(b*tan(d*x + c) + a)*b)/d
 

Sympy [F]

\[ \int (a+b \tan (c+d x))^{3/2} \, dx=\int \left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}}\, dx \] Input:

integrate((a+b*tan(d*x+c))**(3/2),x)
 

Output:

Integral((a + b*tan(c + d*x))**(3/2), x)
 

Maxima [F(-2)]

Exception generated. \[ \int (a+b \tan (c+d x))^{3/2} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(b-a>0)', see `assume?` for more 
details)Is
 

Giac [F(-2)]

Exception generated. \[ \int (a+b \tan (c+d x))^{3/2} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a+b*tan(d*x+c))^(3/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Unable to divide, perhaps due to ro 
unding error%%%{%%%{1,[0,9,3]%%%}+%%%{4,[0,7,3]%%%}+%%%{6,[0,5,3]%%%}+%%%{ 
4,[0,3,3]
 

Mupad [B] (verification not implemented)

Time = 2.54 (sec) , antiderivative size = 1099, normalized size of antiderivative = 9.90 \[ \int (a+b \tan (c+d x))^{3/2} \, dx=\text {Too large to display} \] Input:

int((a + b*tan(c + d*x))^(3/2),x)
 

Output:

(2*b*(a + b*tan(c + d*x))^(1/2))/d - atan((b^6*(a + b*tan(c + d*x))^(1/2)* 
((b^3*1i)/(4*d^2) - a^3/(4*d^2) + (3*a*b^2)/(4*d^2) - (a^2*b*3i)/(4*d^2))^ 
(1/2)*32i)/((a^2*b^6*32i)/d - (16*a*b^7)/d - (b^8*16i)/d + (32*a^3*b^5)/d 
+ (a^4*b^4*48i)/d + (48*a^5*b^3)/d) - (32*a*b^5*(a + b*tan(c + d*x))^(1/2) 
*((b^3*1i)/(4*d^2) - a^3/(4*d^2) + (3*a*b^2)/(4*d^2) - (a^2*b*3i)/(4*d^2)) 
^(1/2))/((a^2*b^6*32i)/d - (16*a*b^7)/d - (b^8*16i)/d + (32*a^3*b^5)/d + ( 
a^4*b^4*48i)/d + (48*a^5*b^3)/d) - (a^2*b^4*(a + b*tan(c + d*x))^(1/2)*((b 
^3*1i)/(4*d^2) - a^3/(4*d^2) + (3*a*b^2)/(4*d^2) - (a^2*b*3i)/(4*d^2))^(1/ 
2)*96i)/((a^2*b^6*32i)/d - (16*a*b^7)/d - (b^8*16i)/d + (32*a^3*b^5)/d + ( 
a^4*b^4*48i)/d + (48*a^5*b^3)/d) + (96*a^3*b^3*(a + b*tan(c + d*x))^(1/2)* 
((b^3*1i)/(4*d^2) - a^3/(4*d^2) + (3*a*b^2)/(4*d^2) - (a^2*b*3i)/(4*d^2))^ 
(1/2))/((a^2*b^6*32i)/d - (16*a*b^7)/d - (b^8*16i)/d + (32*a^3*b^5)/d + (a 
^4*b^4*48i)/d + (48*a^5*b^3)/d))*((3*a*b^2 - a^2*b*3i - a^3 + b^3*1i)/(4*d 
^2))^(1/2)*2i - atan((b^6*(a + b*tan(c + d*x))^(1/2)*((3*a*b^2)/(4*d^2) - 
(b^3*1i)/(4*d^2) - a^3/(4*d^2) + (a^2*b*3i)/(4*d^2))^(1/2)*32i)/((b^8*16i) 
/d - (16*a*b^7)/d - (a^2*b^6*32i)/d + (32*a^3*b^5)/d - (a^4*b^4*48i)/d + ( 
48*a^5*b^3)/d) + (32*a*b^5*(a + b*tan(c + d*x))^(1/2)*((3*a*b^2)/(4*d^2) - 
 (b^3*1i)/(4*d^2) - a^3/(4*d^2) + (a^2*b*3i)/(4*d^2))^(1/2))/((b^8*16i)/d 
- (16*a*b^7)/d - (a^2*b^6*32i)/d + (32*a^3*b^5)/d - (a^4*b^4*48i)/d + (48* 
a^5*b^3)/d) - (a^2*b^4*(a + b*tan(c + d*x))^(1/2)*((3*a*b^2)/(4*d^2) - ...
 

Reduce [F]

\[ \int (a+b \tan (c+d x))^{3/2} \, dx=\left (\int \sqrt {a +\tan \left (d x +c \right ) b}d x \right ) a +\left (\int \sqrt {a +\tan \left (d x +c \right ) b}\, \tan \left (d x +c \right )d x \right ) b \] Input:

int((a+b*tan(d*x+c))^(3/2),x)
 

Output:

int(sqrt(tan(c + d*x)*b + a),x)*a + int(sqrt(tan(c + d*x)*b + a)*tan(c + d 
*x),x)*b