\(\int \frac {\cot ^2(c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx\) [535]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [B] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 360 \[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\frac {b \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{a^{3/2} d}-\frac {b \text {arctanh}\left (\frac {\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}{a+\sqrt {a^2+b^2}+b \tan (c+d x)}\right )}{\sqrt {2} \sqrt {a^2+b^2} \sqrt {a+\sqrt {a^2+b^2}} d}-\frac {b \text {arctanh}\left (\frac {\sqrt {a+\sqrt {a^2+b^2}}-\sqrt {2} \sqrt {a+b \tan (c+d x)}}{\sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {2} \sqrt {a^2+b^2} \sqrt {a-\sqrt {a^2+b^2}} d}+\frac {b \text {arctanh}\left (\frac {\sqrt {a+\sqrt {a^2+b^2}}+\sqrt {2} \sqrt {a+b \tan (c+d x)}}{\sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {2} \sqrt {a^2+b^2} \sqrt {a-\sqrt {a^2+b^2}} d}-\frac {\cot (c+d x) \sqrt {a+b \tan (c+d x)}}{a d} \] Output:

b*arctanh((a+b*tan(d*x+c))^(1/2)/a^(1/2))/a^(3/2)/d-1/2*b*arctanh(2^(1/2)* 
(a+(a^2+b^2)^(1/2))^(1/2)*(a+b*tan(d*x+c))^(1/2)/(a+(a^2+b^2)^(1/2)+b*tan( 
d*x+c)))*2^(1/2)/(a^2+b^2)^(1/2)/(a+(a^2+b^2)^(1/2))^(1/2)/d-1/2*b*arctanh 
(((a+(a^2+b^2)^(1/2))^(1/2)-2^(1/2)*(a+b*tan(d*x+c))^(1/2))/(a-(a^2+b^2)^( 
1/2))^(1/2))*2^(1/2)/(a^2+b^2)^(1/2)/(a-(a^2+b^2)^(1/2))^(1/2)/d+1/2*b*arc 
tanh(((a+(a^2+b^2)^(1/2))^(1/2)+2^(1/2)*(a+b*tan(d*x+c))^(1/2))/(a-(a^2+b^ 
2)^(1/2))^(1/2))*2^(1/2)/(a^2+b^2)^(1/2)/(a-(a^2+b^2)^(1/2))^(1/2)/d-cot(d 
*x+c)*(a+b*tan(d*x+c))^(1/2)/a/d
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.55 (sec) , antiderivative size = 142, normalized size of antiderivative = 0.39 \[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\frac {\frac {b \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{a^{3/2}}+\frac {i \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{\sqrt {a-i b}}-\frac {i \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{\sqrt {a+i b}}-\frac {\cot (c+d x) \sqrt {a+b \tan (c+d x)}}{a}}{d} \] Input:

Integrate[Cot[c + d*x]^2/Sqrt[a + b*Tan[c + d*x]],x]
 

Output:

((b*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/a^(3/2) + (I*ArcTanh[Sqrt[a 
 + b*Tan[c + d*x]]/Sqrt[a - I*b]])/Sqrt[a - I*b] - (I*ArcTanh[Sqrt[a + b*T 
an[c + d*x]]/Sqrt[a + I*b]])/Sqrt[a + I*b] - (Cot[c + d*x]*Sqrt[a + b*Tan[ 
c + d*x]])/a)/d
 

Rubi [A] (warning: unable to verify)

Time = 1.32 (sec) , antiderivative size = 495, normalized size of antiderivative = 1.38, number of steps used = 20, number of rules used = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.826, Rules used = {3042, 4052, 27, 3042, 4136, 27, 3042, 3966, 484, 1407, 1142, 25, 27, 1083, 219, 1103, 4117, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^2(c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\tan (c+d x)^2 \sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 4052

\(\displaystyle -\frac {\int \frac {\cot (c+d x) \left (b \tan ^2(c+d x)+2 a \tan (c+d x)+b\right )}{2 \sqrt {a+b \tan (c+d x)}}dx}{a}-\frac {\cot (c+d x) \sqrt {a+b \tan (c+d x)}}{a d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {\cot (c+d x) \left (b \tan ^2(c+d x)+2 a \tan (c+d x)+b\right )}{\sqrt {a+b \tan (c+d x)}}dx}{2 a}-\frac {\cot (c+d x) \sqrt {a+b \tan (c+d x)}}{a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {b \tan (c+d x)^2+2 a \tan (c+d x)+b}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx}{2 a}-\frac {\cot (c+d x) \sqrt {a+b \tan (c+d x)}}{a d}\)

\(\Big \downarrow \) 4136

\(\displaystyle -\frac {\int \frac {2 a}{\sqrt {a+b \tan (c+d x)}}dx+b \int \frac {\cot (c+d x) \left (\tan ^2(c+d x)+1\right )}{\sqrt {a+b \tan (c+d x)}}dx}{2 a}-\frac {\cot (c+d x) \sqrt {a+b \tan (c+d x)}}{a d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2 a \int \frac {1}{\sqrt {a+b \tan (c+d x)}}dx+b \int \frac {\cot (c+d x) \left (\tan ^2(c+d x)+1\right )}{\sqrt {a+b \tan (c+d x)}}dx}{2 a}-\frac {\cot (c+d x) \sqrt {a+b \tan (c+d x)}}{a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 a \int \frac {1}{\sqrt {a+b \tan (c+d x)}}dx+b \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx}{2 a}-\frac {\cot (c+d x) \sqrt {a+b \tan (c+d x)}}{a d}\)

\(\Big \downarrow \) 3966

\(\displaystyle -\frac {\frac {2 a b \int \frac {1}{\sqrt {a+b \tan (c+d x)} \left (\tan ^2(c+d x) b^2+b^2\right )}d(b \tan (c+d x))}{d}+b \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx}{2 a}-\frac {\cot (c+d x) \sqrt {a+b \tan (c+d x)}}{a d}\)

\(\Big \downarrow \) 484

\(\displaystyle -\frac {\frac {4 a b \int \frac {1}{b^4 \tan ^4(c+d x)-2 a b^2 \tan ^2(c+d x)+a^2+b^2}d\sqrt {a+b \tan (c+d x)}}{d}+b \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx}{2 a}-\frac {\cot (c+d x) \sqrt {a+b \tan (c+d x)}}{a d}\)

\(\Big \downarrow \) 1407

\(\displaystyle -\frac {\frac {4 a b \left (\frac {\int \frac {\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}}-\sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{2 \sqrt {2} \sqrt {a^2+b^2} \sqrt {\sqrt {a^2+b^2}+a}}+\frac {\int \frac {\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}}+\sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{2 \sqrt {2} \sqrt {a^2+b^2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}+b \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx}{2 a}-\frac {\cot (c+d x) \sqrt {a+b \tan (c+d x)}}{a d}\)

\(\Big \downarrow \) 1142

\(\displaystyle -\frac {\frac {4 a b \left (\frac {\frac {\sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}-\frac {1}{2} \int -\frac {\sqrt {2} \left (\sqrt {a+\sqrt {a^2+b^2}}-\sqrt {2} \sqrt {a+b \tan (c+d x)}\right )}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{2 \sqrt {2} \sqrt {a^2+b^2} \sqrt {\sqrt {a^2+b^2}+a}}+\frac {\frac {\sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \left (\sqrt {a+\sqrt {a^2+b^2}}+\sqrt {2} \sqrt {a+b \tan (c+d x)}\right )}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{2 \sqrt {2} \sqrt {a^2+b^2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}+b \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx}{2 a}-\frac {\cot (c+d x) \sqrt {a+b \tan (c+d x)}}{a d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\frac {4 a b \left (\frac {\frac {\sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \left (\sqrt {a+\sqrt {a^2+b^2}}-\sqrt {2} \sqrt {a+b \tan (c+d x)}\right )}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{2 \sqrt {2} \sqrt {a^2+b^2} \sqrt {\sqrt {a^2+b^2}+a}}+\frac {\frac {\sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \left (\sqrt {a+\sqrt {a^2+b^2}}+\sqrt {2} \sqrt {a+b \tan (c+d x)}\right )}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{2 \sqrt {2} \sqrt {a^2+b^2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}+b \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx}{2 a}-\frac {\cot (c+d x) \sqrt {a+b \tan (c+d x)}}{a d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {4 a b \left (\frac {\frac {\sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}+\frac {\int \frac {\sqrt {a+\sqrt {a^2+b^2}}-\sqrt {2} \sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}}{2 \sqrt {2} \sqrt {a^2+b^2} \sqrt {\sqrt {a^2+b^2}+a}}+\frac {\frac {\sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}+\frac {\int \frac {\sqrt {a+\sqrt {a^2+b^2}}+\sqrt {2} \sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}}{2 \sqrt {2} \sqrt {a^2+b^2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}+b \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx}{2 a}-\frac {\cot (c+d x) \sqrt {a+b \tan (c+d x)}}{a d}\)

\(\Big \downarrow \) 1083

\(\displaystyle -\frac {\frac {4 a b \left (\frac {\frac {\int \frac {\sqrt {a+\sqrt {a^2+b^2}}-\sqrt {2} \sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}-\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{2 \left (a-\sqrt {a^2+b^2}\right )-b^2 \tan ^2(c+d x)}d\left (2 \sqrt {a+b \tan (c+d x)}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}}\right )}{2 \sqrt {2} \sqrt {a^2+b^2} \sqrt {\sqrt {a^2+b^2}+a}}+\frac {\frac {\int \frac {\sqrt {a+\sqrt {a^2+b^2}}+\sqrt {2} \sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}-\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{2 \left (a-\sqrt {a^2+b^2}\right )-b^2 \tan ^2(c+d x)}d\left (\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}}+2 \sqrt {a+b \tan (c+d x)}\right )}{2 \sqrt {2} \sqrt {a^2+b^2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}+b \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx}{2 a}-\frac {\cot (c+d x) \sqrt {a+b \tan (c+d x)}}{a d}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {\frac {4 a b \left (\frac {\frac {\int \frac {\sqrt {a+\sqrt {a^2+b^2}}-\sqrt {2} \sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}-\frac {\sqrt {\sqrt {a^2+b^2}+a} \text {arctanh}\left (\frac {2 \sqrt {a+b \tan (c+d x)}-\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {a-\sqrt {a^2+b^2}}}}{2 \sqrt {2} \sqrt {a^2+b^2} \sqrt {\sqrt {a^2+b^2}+a}}+\frac {\frac {\int \frac {\sqrt {a+\sqrt {a^2+b^2}}+\sqrt {2} \sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}-\frac {\sqrt {\sqrt {a^2+b^2}+a} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}+2 \sqrt {a+b \tan (c+d x)}}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {a-\sqrt {a^2+b^2}}}}{2 \sqrt {2} \sqrt {a^2+b^2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}+b \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx}{2 a}-\frac {\cot (c+d x) \sqrt {a+b \tan (c+d x)}}{a d}\)

\(\Big \downarrow \) 1103

\(\displaystyle -\frac {b \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx+\frac {4 a b \left (\frac {-\frac {\sqrt {\sqrt {a^2+b^2}+a} \text {arctanh}\left (\frac {2 \sqrt {a+b \tan (c+d x)}-\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {a-\sqrt {a^2+b^2}}}-\frac {1}{2} \log \left (-\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a} \sqrt {a+b \tan (c+d x)}+\sqrt {a^2+b^2}+b^2 \tan ^2(c+d x)\right )}{2 \sqrt {2} \sqrt {a^2+b^2} \sqrt {\sqrt {a^2+b^2}+a}}+\frac {\frac {1}{2} \log \left (\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a} \sqrt {a+b \tan (c+d x)}+\sqrt {a^2+b^2}+b^2 \tan ^2(c+d x)\right )-\frac {\sqrt {\sqrt {a^2+b^2}+a} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}+2 \sqrt {a+b \tan (c+d x)}}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {a-\sqrt {a^2+b^2}}}}{2 \sqrt {2} \sqrt {a^2+b^2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}}{2 a}-\frac {\cot (c+d x) \sqrt {a+b \tan (c+d x)}}{a d}\)

\(\Big \downarrow \) 4117

\(\displaystyle -\frac {\frac {b \int \frac {\cot (c+d x)}{\sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{d}+\frac {4 a b \left (\frac {-\frac {\sqrt {\sqrt {a^2+b^2}+a} \text {arctanh}\left (\frac {2 \sqrt {a+b \tan (c+d x)}-\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {a-\sqrt {a^2+b^2}}}-\frac {1}{2} \log \left (-\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a} \sqrt {a+b \tan (c+d x)}+\sqrt {a^2+b^2}+b^2 \tan ^2(c+d x)\right )}{2 \sqrt {2} \sqrt {a^2+b^2} \sqrt {\sqrt {a^2+b^2}+a}}+\frac {\frac {1}{2} \log \left (\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a} \sqrt {a+b \tan (c+d x)}+\sqrt {a^2+b^2}+b^2 \tan ^2(c+d x)\right )-\frac {\sqrt {\sqrt {a^2+b^2}+a} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}+2 \sqrt {a+b \tan (c+d x)}}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {a-\sqrt {a^2+b^2}}}}{2 \sqrt {2} \sqrt {a^2+b^2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}}{2 a}-\frac {\cot (c+d x) \sqrt {a+b \tan (c+d x)}}{a d}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {\frac {2 \int \frac {1}{\frac {a+b \tan (c+d x)}{b}-\frac {a}{b}}d\sqrt {a+b \tan (c+d x)}}{d}+\frac {4 a b \left (\frac {-\frac {\sqrt {\sqrt {a^2+b^2}+a} \text {arctanh}\left (\frac {2 \sqrt {a+b \tan (c+d x)}-\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {a-\sqrt {a^2+b^2}}}-\frac {1}{2} \log \left (-\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a} \sqrt {a+b \tan (c+d x)}+\sqrt {a^2+b^2}+b^2 \tan ^2(c+d x)\right )}{2 \sqrt {2} \sqrt {a^2+b^2} \sqrt {\sqrt {a^2+b^2}+a}}+\frac {\frac {1}{2} \log \left (\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a} \sqrt {a+b \tan (c+d x)}+\sqrt {a^2+b^2}+b^2 \tan ^2(c+d x)\right )-\frac {\sqrt {\sqrt {a^2+b^2}+a} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}+2 \sqrt {a+b \tan (c+d x)}}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {a-\sqrt {a^2+b^2}}}}{2 \sqrt {2} \sqrt {a^2+b^2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}}{2 a}-\frac {\cot (c+d x) \sqrt {a+b \tan (c+d x)}}{a d}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {\frac {4 a b \left (\frac {-\frac {\sqrt {\sqrt {a^2+b^2}+a} \text {arctanh}\left (\frac {2 \sqrt {a+b \tan (c+d x)}-\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {a-\sqrt {a^2+b^2}}}-\frac {1}{2} \log \left (-\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a} \sqrt {a+b \tan (c+d x)}+\sqrt {a^2+b^2}+b^2 \tan ^2(c+d x)\right )}{2 \sqrt {2} \sqrt {a^2+b^2} \sqrt {\sqrt {a^2+b^2}+a}}+\frac {\frac {1}{2} \log \left (\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a} \sqrt {a+b \tan (c+d x)}+\sqrt {a^2+b^2}+b^2 \tan ^2(c+d x)\right )-\frac {\sqrt {\sqrt {a^2+b^2}+a} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}+2 \sqrt {a+b \tan (c+d x)}}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {a-\sqrt {a^2+b^2}}}}{2 \sqrt {2} \sqrt {a^2+b^2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}-\frac {2 b \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a} d}}{2 a}-\frac {\cot (c+d x) \sqrt {a+b \tan (c+d x)}}{a d}\)

Input:

Int[Cot[c + d*x]^2/Sqrt[a + b*Tan[c + d*x]],x]
 

Output:

-1/2*((-2*b*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/(Sqrt[a]*d) + (4*a* 
b*((-((Sqrt[a + Sqrt[a^2 + b^2]]*ArcTanh[(-(Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^ 
2]]) + 2*Sqrt[a + b*Tan[c + d*x]])/(Sqrt[2]*Sqrt[a - Sqrt[a^2 + b^2]])])/S 
qrt[a - Sqrt[a^2 + b^2]]) - Log[Sqrt[a^2 + b^2] + b^2*Tan[c + d*x]^2 - Sqr 
t[2]*Sqrt[a + Sqrt[a^2 + b^2]]*Sqrt[a + b*Tan[c + d*x]]]/2)/(2*Sqrt[2]*Sqr 
t[a^2 + b^2]*Sqrt[a + Sqrt[a^2 + b^2]]) + (-((Sqrt[a + Sqrt[a^2 + b^2]]*Ar 
cTanh[(Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]] + 2*Sqrt[a + b*Tan[c + d*x]])/(Sq 
rt[2]*Sqrt[a - Sqrt[a^2 + b^2]])])/Sqrt[a - Sqrt[a^2 + b^2]]) + Log[Sqrt[a 
^2 + b^2] + b^2*Tan[c + d*x]^2 + Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]*Sqrt[a 
+ b*Tan[c + d*x]]]/2)/(2*Sqrt[2]*Sqrt[a^2 + b^2]*Sqrt[a + Sqrt[a^2 + b^2]] 
)))/d)/a - (Cot[c + d*x]*Sqrt[a + b*Tan[c + d*x]])/(a*d)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 484
Int[1/(Sqrt[(c_) + (d_.)*(x_)]*((a_) + (b_.)*(x_)^2)), x_Symbol] :> Simp[2* 
d   Subst[Int[1/(b*c^2 + a*d^2 - 2*b*c*x^2 + b*x^4), x], x, Sqrt[c + d*x]], 
 x] /; FreeQ[{a, b, c, d}, x]
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 1407
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[a/ 
c, 2]}, With[{r = Rt[2*q - b/c, 2]}, Simp[1/(2*c*q*r)   Int[(r - x)/(q - r* 
x + x^2), x], x] + Simp[1/(2*c*q*r)   Int[(r + x)/(q + r*x + x^2), x], x]]] 
 /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[b^2 - 4*a*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3966
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Su 
bst[Int[(a + x)^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{a, b, c 
, d, n}, x] && NeQ[a^2 + b^2, 0]
 

rule 4052
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*(a + b*Tan[e + f*x])^(m + 1)*((c 
+ d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d))), x] + Simp[1 
/((m + 1)*(a^2 + b^2)*(b*c - a*d))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + 
d*Tan[e + f*x])^n*Simp[a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - 
 a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x], x], x] / 
; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] 
 && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || Integ 
erQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 

rule 4136
Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) 
+ (f_.)*(x_)]), x_Symbol] :> Simp[1/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^ 
n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Simp[ 
(A*b^2 - a*b*B + a^2*C)/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^n*((1 + Tan[ 
e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, 
 C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] & 
&  !GtQ[n, 0] &&  !LeQ[n, -1]
 
Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 16.28 (sec) , antiderivative size = 827974, normalized size of antiderivative = 2299.93

\[\text {output too large to display}\]

Input:

int(cot(d*x+c)^2/(a+b*tan(d*x+c))^(1/2),x)
 

Output:

result too large to display
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 819 vs. \(2 (297) = 594\).

Time = 0.15 (sec) , antiderivative size = 1657, normalized size of antiderivative = 4.60 \[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Too large to display} \] Input:

integrate(cot(d*x+c)^2/(a+b*tan(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

[-1/2*(a^2*d*sqrt(-((a^2 + b^2)*d^2*sqrt(-b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4 
)) + a)/((a^2 + b^2)*d^2))*log(sqrt(b*tan(d*x + c) + a)*b + ((a^3 + a*b^2) 
*d^3*sqrt(-b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + b^2*d)*sqrt(-((a^2 + b^2)* 
d^2*sqrt(-b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + a)/((a^2 + b^2)*d^2)))*tan( 
d*x + c) - a^2*d*sqrt(-((a^2 + b^2)*d^2*sqrt(-b^2/((a^4 + 2*a^2*b^2 + b^4) 
*d^4)) + a)/((a^2 + b^2)*d^2))*log(sqrt(b*tan(d*x + c) + a)*b - ((a^3 + a* 
b^2)*d^3*sqrt(-b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + b^2*d)*sqrt(-((a^2 + b 
^2)*d^2*sqrt(-b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + a)/((a^2 + b^2)*d^2)))* 
tan(d*x + c) - a^2*d*sqrt(((a^2 + b^2)*d^2*sqrt(-b^2/((a^4 + 2*a^2*b^2 + b 
^4)*d^4)) - a)/((a^2 + b^2)*d^2))*log(sqrt(b*tan(d*x + c) + a)*b + ((a^3 + 
 a*b^2)*d^3*sqrt(-b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - b^2*d)*sqrt(((a^2 + 
 b^2)*d^2*sqrt(-b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - a)/((a^2 + b^2)*d^2)) 
)*tan(d*x + c) + a^2*d*sqrt(((a^2 + b^2)*d^2*sqrt(-b^2/((a^4 + 2*a^2*b^2 + 
 b^4)*d^4)) - a)/((a^2 + b^2)*d^2))*log(sqrt(b*tan(d*x + c) + a)*b - ((a^3 
 + a*b^2)*d^3*sqrt(-b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - b^2*d)*sqrt(((a^2 
 + b^2)*d^2*sqrt(-b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - a)/((a^2 + b^2)*d^2 
)))*tan(d*x + c) - sqrt(a)*b*log((b*tan(d*x + c) + 2*sqrt(b*tan(d*x + c) + 
 a)*sqrt(a) + 2*a)/tan(d*x + c))*tan(d*x + c) + 2*sqrt(b*tan(d*x + c) + a) 
*a)/(a^2*d*tan(d*x + c)), -1/2*(a^2*d*sqrt(-((a^2 + b^2)*d^2*sqrt(-b^2/((a 
^4 + 2*a^2*b^2 + b^4)*d^4)) + a)/((a^2 + b^2)*d^2))*log(sqrt(b*tan(d*x ...
 

Sympy [F]

\[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\int \frac {\cot ^{2}{\left (c + d x \right )}}{\sqrt {a + b \tan {\left (c + d x \right )}}}\, dx \] Input:

integrate(cot(d*x+c)**2/(a+b*tan(d*x+c))**(1/2),x)
 

Output:

Integral(cot(c + d*x)**2/sqrt(a + b*tan(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\int { \frac {\cot \left (d x + c\right )^{2}}{\sqrt {b \tan \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(cot(d*x+c)^2/(a+b*tan(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

integrate(cot(d*x + c)^2/sqrt(b*tan(d*x + c) + a), x)
                                                                                    
                                                                                    
 

Giac [F(-1)]

Timed out. \[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate(cot(d*x+c)^2/(a+b*tan(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [B] (verification not implemented)

Time = 4.69 (sec) , antiderivative size = 2145, normalized size of antiderivative = 5.96 \[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Too large to display} \] Input:

int(cot(c + d*x)^2/(a + b*tan(c + d*x))^(1/2),x)
 

Output:

atan((((-(a - b*1i)/(4*a^2*d^2 + 4*b^2*d^2))^(1/2)*((((16*(16*a*b^11*d^4 + 
 8*a^3*b^9*d^4))/(a^2*d^5) - (16*(-(a - b*1i)/(4*a^2*d^2 + 4*b^2*d^2))^(1/ 
2)*(32*a^2*b^10*d^4 + 48*a^4*b^8*d^4)*(a + b*tan(c + d*x))^(1/2))/(a^2*d^4 
))*(-(a - b*1i)/(4*a^2*d^2 + 4*b^2*d^2))^(1/2) + (16*(4*a*b^10*d^2 - 20*a^ 
3*b^8*d^2)*(a + b*tan(c + d*x))^(1/2))/(a^2*d^4))*(-(a - b*1i)/(4*a^2*d^2 
+ 4*b^2*d^2))^(1/2) + (16*(2*b^11*d^2 + 8*a^2*b^9*d^2))/(a^2*d^5)) + (16*( 
b^10 - 2*a^2*b^8)*(a + b*tan(c + d*x))^(1/2))/(a^2*d^4))*(-(a - b*1i)/(4*a 
^2*d^2 + 4*b^2*d^2))^(1/2)*1i - ((-(a - b*1i)/(4*a^2*d^2 + 4*b^2*d^2))^(1/ 
2)*((((16*(16*a*b^11*d^4 + 8*a^3*b^9*d^4))/(a^2*d^5) + (16*(-(a - b*1i)/(4 
*a^2*d^2 + 4*b^2*d^2))^(1/2)*(32*a^2*b^10*d^4 + 48*a^4*b^8*d^4)*(a + b*tan 
(c + d*x))^(1/2))/(a^2*d^4))*(-(a - b*1i)/(4*a^2*d^2 + 4*b^2*d^2))^(1/2) - 
 (16*(4*a*b^10*d^2 - 20*a^3*b^8*d^2)*(a + b*tan(c + d*x))^(1/2))/(a^2*d^4) 
)*(-(a - b*1i)/(4*a^2*d^2 + 4*b^2*d^2))^(1/2) + (16*(2*b^11*d^2 + 8*a^2*b^ 
9*d^2))/(a^2*d^5)) - (16*(b^10 - 2*a^2*b^8)*(a + b*tan(c + d*x))^(1/2))/(a 
^2*d^4))*(-(a - b*1i)/(4*a^2*d^2 + 4*b^2*d^2))^(1/2)*1i)/(((-(a - b*1i)/(4 
*a^2*d^2 + 4*b^2*d^2))^(1/2)*((((16*(16*a*b^11*d^4 + 8*a^3*b^9*d^4))/(a^2* 
d^5) - (16*(-(a - b*1i)/(4*a^2*d^2 + 4*b^2*d^2))^(1/2)*(32*a^2*b^10*d^4 + 
48*a^4*b^8*d^4)*(a + b*tan(c + d*x))^(1/2))/(a^2*d^4))*(-(a - b*1i)/(4*a^2 
*d^2 + 4*b^2*d^2))^(1/2) + (16*(4*a*b^10*d^2 - 20*a^3*b^8*d^2)*(a + b*tan( 
c + d*x))^(1/2))/(a^2*d^4))*(-(a - b*1i)/(4*a^2*d^2 + 4*b^2*d^2))^(1/2)...
 

Reduce [F]

\[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\int \frac {\sqrt {a +\tan \left (d x +c \right ) b}\, \cot \left (d x +c \right )^{2}}{a +\tan \left (d x +c \right ) b}d x \] Input:

int(cot(d*x+c)^2/(a+b*tan(d*x+c))^(1/2),x)
 

Output:

int((sqrt(tan(c + d*x)*b + a)*cot(c + d*x)**2)/(tan(c + d*x)*b + a),x)