\(\int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx\) [550]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 155 \[ \int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx=-\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{(a-i b)^{5/2} d}-\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{(a+i b)^{5/2} d}+\frac {2 a}{3 \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac {2 \left (a^2-b^2\right )}{\left (a^2+b^2\right )^2 d \sqrt {a+b \tan (c+d x)}} \] Output:

-arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/(a-I*b)^(5/2)/d-arctanh((a+ 
b*tan(d*x+c))^(1/2)/(a+I*b)^(1/2))/(a+I*b)^(5/2)/d+2/3*a/(a^2+b^2)/d/(a+b* 
tan(d*x+c))^(3/2)+2*(a^2-b^2)/(a^2+b^2)^2/d/(a+b*tan(d*x+c))^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.11 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.66 \[ \int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx=\frac {(a+i b) \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},1,-\frac {1}{2},\frac {a+b \tan (c+d x)}{a-i b}\right )+(a-i b) \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},1,-\frac {1}{2},\frac {a+b \tan (c+d x)}{a+i b}\right )}{3 \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}} \] Input:

Integrate[Tan[c + d*x]/(a + b*Tan[c + d*x])^(5/2),x]
 

Output:

((a + I*b)*Hypergeometric2F1[-3/2, 1, -1/2, (a + b*Tan[c + d*x])/(a - I*b) 
] + (a - I*b)*Hypergeometric2F1[-3/2, 1, -1/2, (a + b*Tan[c + d*x])/(a + I 
*b)])/(3*(a^2 + b^2)*d*(a + b*Tan[c + d*x])^(3/2))
 

Rubi [A] (warning: unable to verify)

Time = 0.83 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.18, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.524, Rules used = {3042, 4012, 3042, 4012, 3042, 4022, 3042, 4020, 25, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 4012

\(\displaystyle \frac {\int \frac {b+a \tan (c+d x)}{(a+b \tan (c+d x))^{3/2}}dx}{a^2+b^2}+\frac {2 a}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {b+a \tan (c+d x)}{(a+b \tan (c+d x))^{3/2}}dx}{a^2+b^2}+\frac {2 a}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4012

\(\displaystyle \frac {\frac {\int \frac {2 a b+\left (a^2-b^2\right ) \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx}{a^2+b^2}+\frac {2 \left (a^2-b^2\right )}{d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{a^2+b^2}+\frac {2 a}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {2 a b+\left (a^2-b^2\right ) \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx}{a^2+b^2}+\frac {2 \left (a^2-b^2\right )}{d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{a^2+b^2}+\frac {2 a}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4022

\(\displaystyle \frac {2 a}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 \left (a^2-b^2\right )}{d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {1}{2} i (a-i b)^2 \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx-\frac {1}{2} i (a+i b)^2 \int \frac {i \tan (c+d x)+1}{\sqrt {a+b \tan (c+d x)}}dx}{a^2+b^2}}{a^2+b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 \left (a^2-b^2\right )}{d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {1}{2} i (a-i b)^2 \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx-\frac {1}{2} i (a+i b)^2 \int \frac {i \tan (c+d x)+1}{\sqrt {a+b \tan (c+d x)}}dx}{a^2+b^2}}{a^2+b^2}\)

\(\Big \downarrow \) 4020

\(\displaystyle \frac {2 a}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 \left (a^2-b^2\right )}{d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {(a-i b)^2 \int -\frac {1}{(i \tan (c+d x)+1) \sqrt {a+b \tan (c+d x)}}d(-i \tan (c+d x))}{2 d}+\frac {(a+i b)^2 \int -\frac {1}{(1-i \tan (c+d x)) \sqrt {a+b \tan (c+d x)}}d(i \tan (c+d x))}{2 d}}{a^2+b^2}}{a^2+b^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 a}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 \left (a^2-b^2\right )}{d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {-\frac {(a-i b)^2 \int \frac {1}{(i \tan (c+d x)+1) \sqrt {a+b \tan (c+d x)}}d(-i \tan (c+d x))}{2 d}-\frac {(a+i b)^2 \int \frac {1}{(1-i \tan (c+d x)) \sqrt {a+b \tan (c+d x)}}d(i \tan (c+d x))}{2 d}}{a^2+b^2}}{a^2+b^2}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {2 a}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 \left (a^2-b^2\right )}{d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {i (a-i b)^2 \int \frac {1}{-\frac {i \tan ^2(c+d x)}{b}-\frac {i a}{b}+1}d\sqrt {a+b \tan (c+d x)}}{b d}-\frac {i (a+i b)^2 \int \frac {1}{\frac {i \tan ^2(c+d x)}{b}+\frac {i a}{b}+1}d\sqrt {a+b \tan (c+d x)}}{b d}}{a^2+b^2}}{a^2+b^2}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {2 a}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 \left (a^2-b^2\right )}{d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {i (a-i b)^2 \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}-\frac {i (a+i b)^2 \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}}{a^2+b^2}}{a^2+b^2}\)

Input:

Int[Tan[c + d*x]/(a + b*Tan[c + d*x])^(5/2),x]
 

Output:

(2*a)/(3*(a^2 + b^2)*d*(a + b*Tan[c + d*x])^(3/2)) + ((((-I)*(a + I*b)^2*A 
rcTan[Tan[c + d*x]/Sqrt[a - I*b]])/(Sqrt[a - I*b]*d) + (I*(a - I*b)^2*ArcT 
an[Tan[c + d*x]/Sqrt[a + I*b]])/(Sqrt[a + I*b]*d))/(a^2 + b^2) + (2*(a^2 - 
 b^2))/((a^2 + b^2)*d*Sqrt[a + b*Tan[c + d*x]]))/(a^2 + b^2)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4012
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(b*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/ 
(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e + f*x] 
)^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a 
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1 
]
 

rule 4020
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[c*(d/f)   Subst[Int[(a + (b/d)*x)^m/(d^2 + 
c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]
 

rule 4022
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(c + I*d)/2   Int[(a + b*Tan[e + f*x])^m*( 
1 - I*Tan[e + f*x]), x], x] + Simp[(c - I*d)/2   Int[(a + b*Tan[e + f*x])^m 
*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c 
 - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2156\) vs. \(2(133)=266\).

Time = 0.26 (sec) , antiderivative size = 2157, normalized size of antiderivative = 13.92

method result size
derivativedivides \(\text {Expression too large to display}\) \(2157\)
default \(\text {Expression too large to display}\) \(2157\)

Input:

int(tan(d*x+c)/(a+b*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 

Output:

2/3*a/(a^2+b^2)/d/(a+b*tan(d*x+c))^(3/2)+2/d*a^2/(a^2+b^2)^2/(a+b*tan(d*x+ 
c))^(1/2)-2/d/(a^2+b^2)^2/(a+b*tan(d*x+c))^(1/2)*b^2+2/d/(a^2+b^2)^(5/2)/( 
2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b* 
tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a*b^2+1/2/d/(a^2+b^2)^(7 
/2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a 
-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2*b^2-6/d/(a^2+b^2)^(7/2 
)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a 
+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^3*b^2-5/d/(a^2+b^2) 
^(7/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2) 
-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a*b^4-1/2/d/(a^2 
+b^2)^3*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+ 
c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a*b^2-1/2/d*b^2/(a^2+b 
^2)^(7/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a) 
^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2+6/d*b^2/(a^2+b^2 
)^(7/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2* 
(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^3+5/d*b^4/(a^ 
2+b^2)^(7/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2 
)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a-2/d*b^2/ 
(a^2+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^( 
1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a+1/...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3289 vs. \(2 (129) = 258\).

Time = 0.15 (sec) , antiderivative size = 3289, normalized size of antiderivative = 21.22 \[ \int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx=\text {Too large to display} \] Input:

integrate(tan(d*x+c)/(a+b*tan(d*x+c))^(5/2),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx=\int \frac {\tan {\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \] Input:

integrate(tan(d*x+c)/(a+b*tan(d*x+c))**(5/2),x)
 

Output:

Integral(tan(c + d*x)/(a + b*tan(c + d*x))**(5/2), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(tan(d*x+c)/(a+b*tan(d*x+c))^(5/2),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(b-a>0)', see `assume?` for more 
details)Is
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(tan(d*x+c)/(a+b*tan(d*x+c))^(5/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Unable to divide, perhaps due to ro 
unding error%%%{%%%{1,[6,14,5]%%%}+%%%{6,[6,12,5]%%%}+%%%{15,[6,10,5]%%%}+ 
%%%{20,[6
 

Mupad [B] (verification not implemented)

Time = 7.14 (sec) , antiderivative size = 4630, normalized size of antiderivative = 29.87 \[ \int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx=\text {Too large to display} \] Input:

int(tan(c + d*x)/(a + b*tan(c + d*x))^(5/2),x)
 

Output:

atan(((((1/(a^5*d^2 - b^5*d^2*1i + 5*a*b^4*d^2 - a^4*b*d^2*5i + a^2*b^3*d^ 
2*10i - 10*a^3*b^2*d^2))^(1/2)*(48*a*b^20*d^4 - ((1/(a^5*d^2 - b^5*d^2*1i 
+ 5*a*b^4*d^2 - a^4*b*d^2*5i + a^2*b^3*d^2*10i - 10*a^3*b^2*d^2))^(1/2)*(a 
 + b*tan(c + d*x))^(1/2)*(64*a*b^22*d^5 + 640*a^3*b^20*d^5 + 2880*a^5*b^18 
*d^5 + 7680*a^7*b^16*d^5 + 13440*a^9*b^14*d^5 + 16128*a^11*b^12*d^5 + 1344 
0*a^13*b^10*d^5 + 7680*a^15*b^8*d^5 + 2880*a^17*b^6*d^5 + 640*a^19*b^4*d^5 
 + 64*a^21*b^2*d^5))/4 + 368*a^3*b^18*d^4 + 1216*a^5*b^16*d^4 + 2240*a^7*b 
^14*d^4 + 2464*a^9*b^12*d^4 + 1568*a^11*b^10*d^4 + 448*a^13*b^8*d^4 - 64*a 
^15*b^6*d^4 - 80*a^17*b^4*d^4 - 16*a^19*b^2*d^4))/2 - ((a + b*tan(c + d*x) 
)^(1/2)*(320*a^4*b^14*d^3 - 16*b^18*d^3 + 1024*a^6*b^12*d^3 + 1440*a^8*b^1 
0*d^3 + 1024*a^10*b^8*d^3 + 320*a^12*b^6*d^3 - 16*a^16*b^2*d^3))/2)*(1/(a^ 
5*d^2 - b^5*d^2*1i + 5*a*b^4*d^2 - a^4*b*d^2*5i + a^2*b^3*d^2*10i - 10*a^3 
*b^2*d^2))^(1/2)*1i - (((1/(a^5*d^2 - b^5*d^2*1i + 5*a*b^4*d^2 - a^4*b*d^2 
*5i + a^2*b^3*d^2*10i - 10*a^3*b^2*d^2))^(1/2)*(48*a*b^20*d^4 + ((1/(a^5*d 
^2 - b^5*d^2*1i + 5*a*b^4*d^2 - a^4*b*d^2*5i + a^2*b^3*d^2*10i - 10*a^3*b^ 
2*d^2))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^22*d^5 + 640*a^3*b^20*d^5 
 + 2880*a^5*b^18*d^5 + 7680*a^7*b^16*d^5 + 13440*a^9*b^14*d^5 + 16128*a^11 
*b^12*d^5 + 13440*a^13*b^10*d^5 + 7680*a^15*b^8*d^5 + 2880*a^17*b^6*d^5 + 
640*a^19*b^4*d^5 + 64*a^21*b^2*d^5))/4 + 368*a^3*b^18*d^4 + 1216*a^5*b^16* 
d^4 + 2240*a^7*b^14*d^4 + 2464*a^9*b^12*d^4 + 1568*a^11*b^10*d^4 + 448*...
 

Reduce [F]

\[ \int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx=\int \frac {\sqrt {a +\tan \left (d x +c \right ) b}\, \tan \left (d x +c \right )}{\tan \left (d x +c \right )^{3} b^{3}+3 \tan \left (d x +c \right )^{2} a \,b^{2}+3 \tan \left (d x +c \right ) a^{2} b +a^{3}}d x \] Input:

int(tan(d*x+c)/(a+b*tan(d*x+c))^(5/2),x)
 

Output:

int((sqrt(tan(c + d*x)*b + a)*tan(c + d*x))/(tan(c + d*x)**3*b**3 + 3*tan( 
c + d*x)**2*a*b**2 + 3*tan(c + d*x)*a**2*b + a**3),x)