\(\int \frac {a+b \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x)} \, dx\) [559]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 124 \[ \int \frac {a+b \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\frac {(a-b) \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {(a-b) \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}+\frac {(a+b) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\tan (c+d x)}}{1+\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {2 a}{d \sqrt {\tan (c+d x)}} \] Output:

-1/2*(a-b)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)/d-1/2*(a-b)*arctan( 
1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)/d+1/2*(a+b)*arctanh(2^(1/2)*tan(d*x+c) 
^(1/2)/(1+tan(d*x+c)))*2^(1/2)/d-2*a/d/tan(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.07 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.56 \[ \int \frac {a+b \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\frac {-\left ((a+i b) \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},-i \tan (c+d x)\right )\right )-(a-i b) \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},i \tan (c+d x)\right )}{d \sqrt {\tan (c+d x)}} \] Input:

Integrate[(a + b*Tan[c + d*x])/Tan[c + d*x]^(3/2),x]
 

Output:

(-((a + I*b)*Hypergeometric2F1[-1/2, 1, 1/2, (-I)*Tan[c + d*x]]) - (a - I* 
b)*Hypergeometric2F1[-1/2, 1, 1/2, I*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]])
 

Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.31, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.571, Rules used = {3042, 4012, 3042, 4017, 1482, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a+b \tan (c+d x)}{\tan (c+d x)^{3/2}}dx\)

\(\Big \downarrow \) 4012

\(\displaystyle \int \frac {b-a \tan (c+d x)}{\sqrt {\tan (c+d x)}}dx-\frac {2 a}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {b-a \tan (c+d x)}{\sqrt {\tan (c+d x)}}dx-\frac {2 a}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {2 \int \frac {b-a \tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}}{d}-\frac {2 a}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {2 \left (\frac {1}{2} (a+b) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}-\frac {1}{2} (a-b) \int \frac {\tan (c+d x)+1}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}\right )}{d}-\frac {2 a}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 \left (\frac {1}{2} (a+b) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}-\frac {1}{2} (a-b) \left (\frac {1}{2} \int \frac {1}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}+\frac {1}{2} \int \frac {1}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}\right )\right )}{d}-\frac {2 a}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 \left (\frac {1}{2} (a+b) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}-\frac {1}{2} (a-b) \left (\frac {\int \frac {1}{-\tan (c+d x)-1}d\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\tan (c+d x)-1}d\left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 \left (\frac {1}{2} (a+b) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}-\frac {1}{2} (a-b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 \left (\frac {1}{2} (a+b) \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}\right )-\frac {1}{2} (a-b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \left (\frac {1}{2} (a+b) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}\right )-\frac {1}{2} (a-b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (\frac {1}{2} (a+b) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\tan (c+d x)}+1}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}\right )-\frac {1}{2} (a-b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 \left (\frac {1}{2} (a+b) \left (\frac {\log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}\right )-\frac {1}{2} (a-b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a}{d \sqrt {\tan (c+d x)}}\)

Input:

Int[(a + b*Tan[c + d*x])/Tan[c + d*x]^(3/2),x]
 

Output:

(2*(-1/2*((a - b)*(-(ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]]/Sqrt[2]) + Arc 
Tan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]]/Sqrt[2])) + ((a + b)*(-1/2*Log[1 - Sqr 
t[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]]/Sqrt[2] + Log[1 + Sqrt[2]*Sqrt[Tan 
[c + d*x]] + Tan[c + d*x]]/(2*Sqrt[2])))/2))/d - (2*a)/(d*Sqrt[Tan[c + d*x 
]])
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4012
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(b*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/ 
(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e + f*x] 
)^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a 
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1 
]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 
Maple [A] (verified)

Time = 0.12 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.52

method result size
derivativedivides \(\frac {-\frac {2 a}{\sqrt {\tan \left (d x +c \right )}}+\frac {b \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}-\frac {a \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}}{d}\) \(189\)
default \(\frac {-\frac {2 a}{\sqrt {\tan \left (d x +c \right )}}+\frac {b \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}-\frac {a \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}}{d}\) \(189\)
parts \(\frac {a \left (-\frac {2}{\sqrt {\tan \left (d x +c \right )}}-\frac {\sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}\right )}{d}+\frac {b \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4 d}\) \(192\)

Input:

int((a+b*tan(d*x+c))/tan(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/d*(-2*a/tan(d*x+c)^(1/2)+1/4*b*2^(1/2)*(ln((tan(d*x+c)+2^(1/2)*tan(d*x+c 
)^(1/2)+1)/(tan(d*x+c)-2^(1/2)*tan(d*x+c)^(1/2)+1))+2*arctan(1+2^(1/2)*tan 
(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2)))-1/4*a*2^(1/2)*(ln((t 
an(d*x+c)-2^(1/2)*tan(d*x+c)^(1/2)+1)/(tan(d*x+c)+2^(1/2)*tan(d*x+c)^(1/2) 
+1))+2*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*tan(d*x+c)^( 
1/2))))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 405 vs. \(2 (105) = 210\).

Time = 0.09 (sec) , antiderivative size = 405, normalized size of antiderivative = 3.27 \[ \int \frac {a+b \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 \, \sqrt {\frac {1}{2}} d \sqrt {\frac {a^{2} - 2 \, a b + b^{2}}{d^{2}}} \arctan \left (-\frac {2 \, \sqrt {\frac {1}{2}} {\left (a + b\right )} d \sqrt {\frac {a^{2} - 2 \, a b + b^{2}}{d^{2}}} \sqrt {\tan \left (d x + c\right )} + d^{2} \sqrt {\frac {a^{2} + 2 \, a b + b^{2}}{d^{2}}} \sqrt {\frac {a^{2} - 2 \, a b + b^{2}}{d^{2}}}}{a^{2} - b^{2}}\right ) \tan \left (d x + c\right ) + 2 \, \sqrt {\frac {1}{2}} d \sqrt {\frac {a^{2} - 2 \, a b + b^{2}}{d^{2}}} \arctan \left (-\frac {2 \, \sqrt {\frac {1}{2}} {\left (a + b\right )} d \sqrt {\frac {a^{2} - 2 \, a b + b^{2}}{d^{2}}} \sqrt {\tan \left (d x + c\right )} - d^{2} \sqrt {\frac {a^{2} + 2 \, a b + b^{2}}{d^{2}}} \sqrt {\frac {a^{2} - 2 \, a b + b^{2}}{d^{2}}}}{a^{2} - b^{2}}\right ) \tan \left (d x + c\right ) + \sqrt {\frac {1}{2}} d \sqrt {\frac {a^{2} + 2 \, a b + b^{2}}{d^{2}}} \log \left (2 \, \sqrt {\frac {1}{2}} d \sqrt {\frac {a^{2} + 2 \, a b + b^{2}}{d^{2}}} \sqrt {\tan \left (d x + c\right )} + {\left (a + b\right )} \tan \left (d x + c\right ) + a + b\right ) \tan \left (d x + c\right ) - \sqrt {\frac {1}{2}} d \sqrt {\frac {a^{2} + 2 \, a b + b^{2}}{d^{2}}} \log \left (-2 \, \sqrt {\frac {1}{2}} d \sqrt {\frac {a^{2} + 2 \, a b + b^{2}}{d^{2}}} \sqrt {\tan \left (d x + c\right )} + {\left (a + b\right )} \tan \left (d x + c\right ) + a + b\right ) \tan \left (d x + c\right ) - 4 \, a \sqrt {\tan \left (d x + c\right )}}{2 \, d \tan \left (d x + c\right )} \] Input:

integrate((a+b*tan(d*x+c))/tan(d*x+c)^(3/2),x, algorithm="fricas")
 

Output:

1/2*(2*sqrt(1/2)*d*sqrt((a^2 - 2*a*b + b^2)/d^2)*arctan(-(2*sqrt(1/2)*(a + 
 b)*d*sqrt((a^2 - 2*a*b + b^2)/d^2)*sqrt(tan(d*x + c)) + d^2*sqrt((a^2 + 2 
*a*b + b^2)/d^2)*sqrt((a^2 - 2*a*b + b^2)/d^2))/(a^2 - b^2))*tan(d*x + c) 
+ 2*sqrt(1/2)*d*sqrt((a^2 - 2*a*b + b^2)/d^2)*arctan(-(2*sqrt(1/2)*(a + b) 
*d*sqrt((a^2 - 2*a*b + b^2)/d^2)*sqrt(tan(d*x + c)) - d^2*sqrt((a^2 + 2*a* 
b + b^2)/d^2)*sqrt((a^2 - 2*a*b + b^2)/d^2))/(a^2 - b^2))*tan(d*x + c) + s 
qrt(1/2)*d*sqrt((a^2 + 2*a*b + b^2)/d^2)*log(2*sqrt(1/2)*d*sqrt((a^2 + 2*a 
*b + b^2)/d^2)*sqrt(tan(d*x + c)) + (a + b)*tan(d*x + c) + a + b)*tan(d*x 
+ c) - sqrt(1/2)*d*sqrt((a^2 + 2*a*b + b^2)/d^2)*log(-2*sqrt(1/2)*d*sqrt(( 
a^2 + 2*a*b + b^2)/d^2)*sqrt(tan(d*x + c)) + (a + b)*tan(d*x + c) + a + b) 
*tan(d*x + c) - 4*a*sqrt(tan(d*x + c)))/(d*tan(d*x + c))
 

Sympy [F]

\[ \int \frac {a+b \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {a + b \tan {\left (c + d x \right )}}{\tan ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate((a+b*tan(d*x+c))/tan(d*x+c)**(3/2),x)
 

Output:

Integral((a + b*tan(c + d*x))/tan(c + d*x)**(3/2), x)
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.09 \[ \int \frac {a+b \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 \, \sqrt {2} {\left (a - b\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) + 2 \, \sqrt {2} {\left (a - b\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) - \sqrt {2} {\left (a + b\right )} \log \left (\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) + \sqrt {2} {\left (a + b\right )} \log \left (-\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) + \frac {8 \, a}{\sqrt {\tan \left (d x + c\right )}}}{4 \, d} \] Input:

integrate((a+b*tan(d*x+c))/tan(d*x+c)^(3/2),x, algorithm="maxima")
 

Output:

-1/4*(2*sqrt(2)*(a - b)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(tan(d*x + c)) 
)) + 2*sqrt(2)*(a - b)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(tan(d*x + c)) 
)) - sqrt(2)*(a + b)*log(sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1) + 
sqrt(2)*(a + b)*log(-sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1) + 8*a/ 
sqrt(tan(d*x + c)))/d
 

Giac [F]

\[ \int \frac {a+b \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {b \tan \left (d x + c\right ) + a}{\tan \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+b*tan(d*x+c))/tan(d*x+c)^(3/2),x, algorithm="giac")
 

Output:

undef
 

Mupad [B] (verification not implemented)

Time = 1.74 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.82 \[ \int \frac {a+b \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\frac {{\left (-1\right )}^{1/4}\,a\,\mathrm {atanh}\left ({\left (-1\right )}^{1/4}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\right )}{d}-\frac {{\left (-1\right )}^{1/4}\,a\,\mathrm {atan}\left ({\left (-1\right )}^{1/4}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\right )}{d}-\frac {2\,a}{d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}}-\frac {{\left (-1\right )}^{1/4}\,b\,\mathrm {atan}\left ({\left (-1\right )}^{1/4}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\right )\,1{}\mathrm {i}}{d}-\frac {{\left (-1\right )}^{1/4}\,b\,\mathrm {atanh}\left ({\left (-1\right )}^{1/4}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\right )\,1{}\mathrm {i}}{d} \] Input:

int((a + b*tan(c + d*x))/tan(c + d*x)^(3/2),x)
 

Output:

((-1)^(1/4)*a*atanh((-1)^(1/4)*tan(c + d*x)^(1/2)))/d - ((-1)^(1/4)*a*atan 
((-1)^(1/4)*tan(c + d*x)^(1/2)))/d - (2*a)/(d*tan(c + d*x)^(1/2)) - ((-1)^ 
(1/4)*b*atan((-1)^(1/4)*tan(c + d*x)^(1/2))*1i)/d - ((-1)^(1/4)*b*atanh((- 
1)^(1/4)*tan(c + d*x)^(1/2))*1i)/d
 

Reduce [F]

\[ \int \frac {a+b \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\left (\int \frac {\sqrt {\tan \left (d x +c \right )}}{\tan \left (d x +c \right )^{2}}d x \right ) a +\left (\int \frac {\sqrt {\tan \left (d x +c \right )}}{\tan \left (d x +c \right )}d x \right ) b \] Input:

int((a+b*tan(d*x+c))/tan(d*x+c)^(3/2),x)
 

Output:

int(sqrt(tan(c + d*x))/tan(c + d*x)**2,x)*a + int(sqrt(tan(c + d*x))/tan(c 
 + d*x),x)*b